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BI-CLOSING WORDS

Somayyeh Jangjooye Shaldehi

Abstract. We will show that factor codes that have a bi-closing word are bi-closing a.e.
and have a degree. Moreover, a closing code with a bi-closing word into an irreducible shift
space is constant-to-one. Then we study which properties may be invariant by codes that
have a bi-closing word under factoring and extension. Moreover, we give some conditions for
a bi-closing word and show that every closing open code in an irreducible shift space has a
bi-closing word.

1. Introduction

The study of constant-to-one extensions of shift spaces is of interest in Symbolic
Dynamics. In particular, the search for preserved properties by such extensions has
a long history. One such property is the ’coded’ property, defined by Blanchard and
Hansel [1] as a generalization of irreducible sofic subshifts. Coded systems are the
closure of the set of sequences obtained by free concatenation of the words in a set
of words. Blanchard in [2] defined the notation of the bi-closing word and used it
to prove that every irreducible constant-to-one extension of a coded system is coded.
The purpose of this note is to determine some properties of codes with such a word
and to give some conditions for a factor code with a bi-closing word.

A summary of our results is as follows. In Section 3 we give some properties of
codes that have a bi-closing word. First, we show in Theorem 3.4 that such codes, if
they consist of a maximal fiber ℓ on an irreducible subshift, have degree ℓ and are also
a.e. bi-closing. Moreover, a closing code with a bi-closing word into an irreducible
shift space is constant-to-one (Theorem 3.6). Theorems 3.7 and 3.9 then study the
obtained properties of codes with a bi-closing word under extension and factoring,
respectively. Corollary 3.11 also shows that X is of finite type if an irreducible cover
of a sofic shift X has a bi-closing word.

In Section 4 we give some conditions to have a bi-closing word. The main result
in this section is that every closing open code into an irreducible shift space has a bi-
closing word (Theorem 4.1). Finally, in Section 5 it is proved that double transitivity
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6 Bi-closing words

is a totally invariant property for codes with a bi-closing word (Corollary 5.3), and
as a result Theorem 5.4 shows that any factor code with a bi-closing word on a
synchronized system is hyperbolic.

2. Background and notations

This section is devoted to the basic definitions and theories of symbolic dynamics [12].
Let A be a nonempty finite set and AZ be the collection of all bi-infinite sequences
of symbols from A. The shift map σ : AZ → AZ is defined by (σx)i = xi+1. The pair
(AZ, σ) becomes a dynamical system called the full shift. A shift space (or subshift)
is a closed σ-invariant subset of AZ.

Let Bn(X) be the set of all words of length n occurring in points in X and B(X) =⋃∞
n=0 Bn(X). For u ∈ B(X) the set l[u] = {x ∈ X : x[l,l+|u|−1] = u} is a cylinder.

A subshift X is irreducible if for every pair of words u, v ∈ B(X) there is a word
w ∈ B(X) with uwv ∈ B(X). The orbit of x ∈ X is given by Orb(x) = {σnx : n ∈ Z}.
The shift space X is minimal if Orb(x) = X for each x ∈ X.

Suppose x = · · ·x−1x0x1 · · · is a sequence of symbols in a shift space X over A.
We can transform x into a new sequence y = · · · y−1y0y1 · · · over another alphabet D
as follows. Fix the integers m and n with −m ≤ n. To compute the i-th coordinate
yi of the transformed sequence, we use a function Φ that depends on the window
of coordinates of x from i −m to i + n. Here Φ : Bm+n+1(X) → D is a fixed block
mapping, called (m+n+1)-block mapping, from the set of all words of length m+n+1
occurring in points in X to symbols in D, and so

yi = Φ(xi−mxi−m+1 . . . xi+n) = Φ(x[i−m,i+n]). (1)

Then the mapping φ : X → DZ defined by φ(x) = y with yi, given by (1), is called
the sliding block code (or code) with memory m and anticipation n induced by Φ. We

will denote the formation of φ from Φ by φ = Φ
[−m,n]
∞ . If m = n = 0, then φ = Φ∞

is a 1-block code. An onto-code φ : X → Y is a factor code. Then X is an extension
of Y . If the factor code φ is invertible, then it is called a conjugacy.

We call a code φ : X → Y finite-to-one if the set {|φ−1(y)| : y ∈ Y } is finite. A
finite-to-one code is constant-to-one if the points in the image have the same number
of preimages.

A shift space X is called shift of finite type (SFT) if there exists a finite set F
of words in AZ such that X consists of all points in which there is no occurrence of
words in F .

If G is a directed graph with vertex set V and edge set E , then a shift space XG

whose elements are the set of all bi-infinite paths of G is called an edge shift. Let
G = (G,L) be a labeled graph, where G is a directed graph and L : E → A its label.
Then the shift space is XG = L∞(XG) is a sofic shift and G is a cover of XG . Every
factor of a shift of finite type is sofic. A strictly sofic shift is a sofic shift which is not
of finite type.

Let G = (G,L) be a labeled graph. A word w ∈ B(XG) is called a synchronizing
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word for G if all paths with label w terminate at the same vertex. If for each vertex I
of G the edges starting at I carry different labels, then G is right-resolving. A Fischer
cover of a sofic shift space X is a right-resolving cover with the fewest vertices among
all right-resolving covers of X.

A cover is right-closing with delay D if two paths of length D + 1 always start at
the same vertex and have the same label, then they must have the same initial edge.
Left-closing covers are defined similarly. A bi-closing cover is both left-closing and
right-closing.

A word v in B(X) is a synchronizing word for X if whenever uv, vw ∈ B(X), then
we have uvw ∈ B(X). A synchronized system is an irreducible shift space X with a
synchronizing word.

A point x in a shift space X is called right-transitive if every word in B(X) appears
in x[0,+∞). Left-transitive points are defined similarly. A point x in a shift space X
is called doubly transitive if it is both left- and right-transitive.

For x ∈ B(X), let x− = (xi)i<0 and x+ = (xi)i∈Z+ . Moreover, let X+ = {x+ :
x ∈ X}. Then the successor set of x− (resp. w ∈ B(X)) is defined as ω+(x−) =
{x+ ∈ X+ : x−x+ ∈ X} (resp. ω+(w) = {x+ ∈ X+ : wx+ ∈ X}). For an irreducible
shift space X, if there exists a word w ∈ B(X) and a left-transitive point x ∈ X such
that x[−|w|+1,0] = w and ω+(x(−∞,0]) = ω+(w), then X is called half-synchronized
and w is a half-synchronizing word for X.

Suppose φ = Φ∞ : X → Y is a 1 block code. For w = w1 · · ·wm ∈ Bm(Y ) and
1 ≤ i ≤ m, we define d∗(w, i) as the number of distinct symbols seen at coordinate i in
the preimages of the word w. Now we set d∗ = min{d∗(w, i) : w ∈ B(Y ), 1 ≤ i ≤ |w|}.
A magic word is such a word w that d∗(w, i) = d∗ for any i. Then the index i is called
a magic coordinate.

If for a factor code φ : X → Y there is a positive integer d such that every doubly
transitive point y ∈ Y has exactly d preimages, then d is the degree of φ and φ is
d-to-one a.e.

3. Properties of codes that have a bi-closing word

Recall that any code can be recoded into a 1-block code [12, Proposition 1.5.12]. So
without loss of generality, we assume throughout the paper that φ : X → Y is a
1-block factor code; that is, φ = Φ∞ : X → Y . If φ : X → Y is a code of maximal
fiber ℓ, then |φ−1(y)| ≤ ℓ means for all y ∈ Y and for at least one y ∈ Y , |φ−1(y)| = ℓ.
Given a word v ∈ B(Y ), the word u ∈ B(X) is a lift of v if Φ(u) = v. The following
notion first appeared in [2].

Definition 3.1. Let φ : X → Y be a 1-block factor code of maximal fiber ℓ. A
word v ∈ B(Y ) is called bi-closing if there is a factorization w′ww′′ of v and ℓ distinct
lifts u1, u2, . . . , uℓ of w such that for each occurrence of v in a point y ∈ Y the
corresponding lifts of w in the ℓ preimages of y are exactly u1, u2, . . . , uℓ.

Blanchard [2] gives the following condition for the existence of bi-closing words.
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Theorem 3.2. Every constant-to-one factor code has a bi-closing word.

The following example shows that a factor code with a bi-closing word can be nei-
ther bi-closing nor constant-to-one. But in Theorem 3.4 we prove that these properties
hold almost everywhere.

Example 3.3. Let X be the sofic shift in Figure 1, Y = {0, 1}Z and Φ be a 1-block
mapping 0 → 0, 1 → 1 and 2 → 1 inducing φ = Φ∞ : X → Y .

Given u ∈ B(X), let v = Φ(u). Then it is obvious that φ(ℓ[u]) = ℓ[v] for ℓ ≥ 0 and
thus φ is open. Moreover, we have |φ−1(y)| = 2 for y ̸= 0∞, while |φ−1(0∞)| = 1.
In Theorem 4.5 we will prove that any finite-to-one open code on a synchronized
system has a bi-closing word. Thus, since φ is finite-to-one and open, it has bi-closing
words (for example, the word 1). But φ is not bi-closing, since otherwise it would be
constant-to-one [10, Theorem 4.4].

1

0

2

0

Figure 1: The Fischer cover of X.

Recall that a code φ : X → Y is called right-closing almost everywhere (a.e.) if
whenever left-transitive points x and x are left-asymptotic and φ(x) = φ(x), then
x = x. Left-closing a.e. codes and bi-closing a.e. codes are defined similarly.

Theorem 3.4. Let φ : X → Y be a factor code of maximal fiber ℓ with a bi-closing
word and X be an irreducible shift space. Then φ has degree ℓ and is a.e. bi-closing.

Proof. First we show that φ has degree ℓ. Let v = w′ww′′ ∈ B(Y ) be a bi-closing
word, and let y be a point in Y containing v. According to Definition 3.1, there are
ℓ different lifts u1, u2, . . . , uℓ of w such that for each occurrence of v at the point y in
Y , the corresponding lifts of w in the preimages of y are exactly u1, u2, . . . , uℓ. Thus
y has at least ℓ preimages. On the other hand, φ is of maximal fiber ℓ. Therefore
y has at most ℓ preimages and hence exactly ℓ preimages. Since v appears infinitely
often to the left and to the right in any doubly transitive point, φ thus has degree ℓ.

Now suppose that φ is not right-closing a.e. Then there are various left-transitive
points x and x which are left-asymptotic, and φ(x) = φ(x) = y. Thus, there is an
integer i for which x(−∞,i] = x(−∞,i]. Since y is left-transitive, v appears infinitely
often on the left in y(−∞,i]. We now consider the first appearance of v in y(−∞,i].
Without loss of generality, we can assume that u1 is the corresponding lift of the
first occurrence of w in x(−∞,i] = x(−∞,i]. So u2, u3, . . . , uℓ appear in the other ℓ− 1
preimages of y. But x and x are different, so y has at least ℓ+ 1 preimages, which is
a contradiction. Therefore φ is right-closing a.e. Similarly, it is left-closing a.e. □

Theorem 3.5. Let X be an irreducible sofic shift with the Fischer cover G = (G,L).
Then L∞ has a bi-closing word if and only if X is a shift of finite type.



S. Jangjooye Shaldehi 9

Proof. If X is of finite type, then L∞ is a conjugacy [12]. So by Theorem 3.2 it has
a bi-closing word.

For convenience, suppose that L∞ has a bi-closing word. Recall from [12] that the
Fischer cover of a sofic shift has a synchronizing word that appears infinitely often
to the left in any doubly transitive point x ∈ X. Thus, since L∞ is right-resolving,
x has only one preimage, i.e., the degree of L∞ is 1. Thus, by Theorem 3.4 L∞ is a
conjugacy and X is of finite type. □

LetX be a strictly sofic shift with Fischer cover G = (G,L). Then by Theorem 3.5,
L∞ has no bi-closing word by Theorem 3.5.

The main ingredient for the proof of the following theorem is given in the next
section.

Theorem 3.6. Let φ : X → Y be a closing factor code with a bi-closing word and
Y be an irreducible shift space. Then φ is constant-to-one. In particular, if φ is
bi-closing, then it is open.

Factor codes with a bi-closing word lift the property ’coded’ [2, Proposition 12].
But Fiebig gave a non-synchronized constant-to-one extension of an irreducible shift
of finite type [6]. This means that the properties ’shift of finite type’, ’AFT’ and ’sofic’
are not preserved by the extension of a code which has a bi-closing word. However,
according to Theorem 3.6 and [10, Corollary 4.3], closing codes with a bi-closing word
lift these properties as follows.

Theorem 3.7. Let φ : X → Y be a closing code with a bi-closing word and Y be an
irreducible shift of finite type (resp. strictly AFT or non-AFT sofic). Then X is of
finite type (resp. strictly almost Markov or non-AFT sofic).

As mentioned earlier, Fiebig gave a constant-to-one code φ : X → Y such that X
is an irreducible non-synchronized shift and Y is an irreducible shift of finite type [6].
This example shows that the derived set is not obtained by a code that has a bi-closing
word. For if Y is an irreducible shift of finite type, ∂Y = ∅ [15], while ∂X ̸= ∅ and
hence φ(∂X) ̸= ∂Y .

We now examine some properties that are invariant in codes with a bi-closing
word under factoring. The following notation is motivated by the hyperbolic homeo-
morphism φ : D(X) → D(Y ) defined in [16], where D(X) stands for the set of doubly
transitive points of X.

Definition 3.8. Let φ : X → Y be a factor code and X be an irreducible shift space.
We call φ hyperbolic if there exists d ∈ N and a word w ∈ B2n+1(Y ) and d words
m(1),m(2), . . . ,m(d) ∈ B2k+1(X) in which k ≤ n, so that
(i) if y ∈ Y is such that y[−n,n] = w, then φ−1(y)[−k,k] = {m(1),m(2), . . . ,m(d)}.

(ii) if w′ = ww′′w ∈ B(Y ), then for every 1 ≤ i ≤ d there is a unique word
a(i) ∈ B(X), such that for every x ∈ X with x[−k,k] = m(i) and φ(x)[−n,n+p] = w′,

x[−k,k+p] = a(i) holds.
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Theorem 3.9. Let φ : X → Y be a factor code with a bi-closing word and X be an
irreducible shift of finite type (resp. synchronized or half-synchronized). Then Y is of
finite type (resp. synchronized or half-synchronized).

Proof. Since φ has bi-closing words, it is of maximal fiber d, where d is the degree of φ
(Theorem 3.4). On the other hand, the degree of a finite-to-one code on an irreducible
shift of finite type is the minimal number of preimages of points in Y [12, Theorem
9.1.11]. Thus, if X is of finite type, φ is constant-to-one. The result then follows from
the fact that any constant-to-one factor of an irreducible shift of finite type is of finite
type [10].

Now let X be synchronized. Since φ has a degree, it is hyperbolic [8, Theorem
3.3] and hence Y is synchronized [8, Theorem 4.2]. In the case of half-synchronized,
the existence of the degree after the proof of [9, Theorem 3.3] leads to the result. □

As we mentioned earlier, a factor code with a bi-closing word cannot be constant-
to-one (Example 3.3). But by proving Theorem 3.9 and Theorem 3.2, we have:

Theorem 3.10. Let φ : X → Y be a factor code and X be an irreducible shift of
finite type. Then φ has a bi-closing word if and only if it is constant-to-one.

Note that according to Theorem 3.9 the necessity condition in Theorem 3.5 holds
for all irreducible covers of sofic shifts as follows.

Corollary 3.11. Let X be an irreducible sofic shift and G = (G,L) be an irreducible
cover of X such that L∞ has a bi-closing word. Then X is a shift of finite type.

In Example 3.12 we give an irreducible right-resolving cover of the full 2-shift
without bi-closing words. Therefore, sufficiency in Theorem 3.5 may fail for irreducible
right-resolving covers.

1

0

0

1

0 1

Figure 2: A right-resolving cover of full 2-shift.

Example 3.12. Let X = {0, 1}Z be the full 2-shift and G = (G,L) be an irreducible
right-resolving cover of X, as shown in Figure 2. For w = 000 we have d∗(w, 3) = 1
and hence d∗ = d∗(w, 3) = 1. Recall that the degree of a finite-to-one factor code on
an irreducible shift of finite type is equal to d∗ [12, Theorem 9.1.11]. Therefore, we
have d = d∗ = 1. So if L∞ has bi-closing words, then Theorem 3.4 implies that it is
a conjugacy. But the number of preimages of x = (01)∞ is greater than 1 and this is
a contradiction.
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Blanchard in [2] shows that every constant-to-one factor code has a bi-closing
word, but the converse is not true (Example 3.3). However, we have the following
result.

Theorem 3.13. Let φ : X → Y be a factor code of maximal fiber ℓ. If there are
some k ∈ N such that each word in Bk(Y ) is bi-closing, then φ is constant-to-one and
bi-closing. In particular, it is open.

Proof. Since every word in Bk(Y ) is bi-closing, |ϕ−1(y)| ≥ ℓ for all y ∈ Y and hence
φ is constant-to-one.

Now suppose that there are distinct points x and x in X such that x(−∞,N ] =
x(−∞,N ] and φ(x) = φ(x) = y. By Definition 3.1 sincey[N−k+1,N ] ∈ Bk(Y ) is bi-
closing and φ is a factor code of maximal fiber ℓ, there is a factorization w′ww′′ of
y[N−k+1,N ] and ℓ with different lifts u1, u2, . . . , uℓ of w such that the corresponding
lifts of w in the preimages of y are exactly u1, u2, . . . , uℓ. Without loss of generality,
we can assume that u1 is the corresponding lift of w in x(−∞,N ] = x(−∞,N ]. So
u2, u3, . . . , uℓ appear in the other ℓ − 1 preimages of y. But x and x are distinct.
Therefore |φ−1(y)| ≥ ℓ+ 1, which is a contradiction. So φ is right-closing. Likewise,
it is left-closing. □

Remark 3.14. The hypothesis in Theorem 3.13 does not hold for all constant-to-one
codes. For then φ is bi-closing and thus open [10, Proposition 4.5]; while there is
a constant-to-one code which is not open [10, Example 5.3]. Also, not all bi-closing
codes satisfy the hypothesis in Theorem 3.13. For example, let X be the even shift
with its Fischer cover G = (G,L) in Figure 3. Note that L∞ is bi-resolving, but is
neither open nor constant-to-one. So L∞ has no bi-closing words.

4. Conditions for having a bi-closing word

As we have already mentioned previously, Blanchard has shown that constant-to-one
factor codes have a bi-closing word (Theorem 3.2). Now we give further sufficient
conditions for a factor code to have a bi-closing word.

Theorem 4.1. Every closing open code into an irreducible shift space has a bi-closing
word.

Proof. Let φ : X → Y be a closing open code and Y be irreducible. Without loss of
generality, we assume that φ is right-closing. First, note that any right-closing code
is finite-to-one [12, Proposition 8.1.11]. Since φ is open, it has a degree, say d, and
|φ−1(y)| ≤ d for all y ∈ Y [10, Lemma 2.5]. We show that the number of preimages
of y is at least d. Thus φ is constant-to-one and hence has a bi-closing word [2].

Recode φ to a right-resolving 1-block code and let y ∈ Y . Then for each n there
are at least d∗ distinct symbols at coordinate 0 in the preimages of y[−n,n]. So by
compactness y has at least d∗ preimages.
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Now suppose that y ∈ Y is a double transitive point and w ∈ B(Y ) is a magic
word. Then w appears in y infinitely often to the left and to the right. Since φ is right-
resolving, we have |φ−1(y)| ≤ d∗. Thus, |φ−1(y)| ≤ d∗ for every doubly transitive
point y ∈ Y . On the other hand, according to the previous paragraph, |φ−1(y)| ≥ d∗

for all y ∈ Y . Therefore, |φ−1(y)| = d∗ for every doubly transitive point y ∈ Y .
Since the number of preimages of any doubly transitive point in Y is d, so d = d∗

and hence by the previous paragraph the number of preimages of any point in Y is
at least d. □

Remark 4.2. Note that a closing code or open code may not contain bi-closing words.
For example, L∞ in Remark 3.14 has a bi-closing cover, but it has no bi-closing words.
In the case where φ is open, let X be an irreducible non-coded shift and x = 0∞.
Define φ : X → {x} to be the constant function. Since any irreducible extension of a
coded system by a code that has a bi-closing word is coded [2, Proposition 12], φ has
no bi-closing words.

Moreover, a code with a bi-closing word may be neither closing nor open. Jung
gives such a code [10, Example 5.3].

0

1

0

Figure 3: The Fischer cover of the even shift.

We are now ready to prove Theorem 3.6.

Proof. By the last two paragraphs of the proof of Theorem 4.1, φ has degree d = d∗

and |φ−1(y)| ≥ d for all y ∈ Y . On the other hand, since φ has a bi-closing word,
Theorem 3.4 implies that the number of preimages of any point in Y is at most d. So
φ is constant-to-one. The second part is a direct application of [10, Theorem 4.4]. □

Theorem 4.3. Let φ : X → Y be a closing factor code of maximal fiber ℓ and Y be
an irreducible shift space. Then, φ has a bi-closing word if and only if it has degree ℓ.

Proof. Theorem 3.4 gives us the necessity. If φ has degree ℓ, the proof of Theorem 4.1
implies that |φ−1(y)| ≥ ℓ for every y ∈ Y . So φ is constant-to-one and has a bi-closing
word. □

Note that if the hyperbolic mapping φ is of maximal fiber d, then w in Defintion 3.8
is a bi-closing word for φ. Fiebig [8] showed that the factor code φ of a synchronized
system is hyperbolic if it has degree. Thus, we have the following.

Theorem 4.4. Let φ : X → Y be a factor code with degree d and X be a synchronized
system. If φ is of maximal fiber d, then it has a bi-closing word.

Theorem 4.5. Let φ : X → Y be a finite-to-one open code and X be a shift space
that is either synchronized or minimal. Then φ has a bi-closing word.
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Proof. Let us first assume that X is synchronized. Since φ is open and finite-to-one,
it has a degree, say d, and |φ−1(y)| ≤ d for all y ∈ Y [10, Lemma 2.5]. Then by
Theorem 4.4, we have that X is synchronized implies that φ has a bi-closing word.

Now let X be minimal. Recall that a finite-to-one open factor code on a minimal
system is constant-to-one [13, Lemma 4.1]. Thus, by Theorem 3.2, φ has a bi-closing
word. □

5. Relatively minimality

Definition 5.1. Let φ : X → Y be a factor code between shift spaces. Then X is
called relatively minimal to (Y, φ) if the only subshift U ⊆ X for which φ(U) = Y is
U = X.

Given a factor code φ : X → Y , we have D(X) ⊆ φ−1(D(Y )). The following
theorem shows that relative minimality is equivalent to φ−1(D(Y )) = D(X).

Theorem 5.2. Let φ : X → Y be a factor code and X be an irreducible shift space.
Then X is relatively minimal to (Y, φ) if and only if φ−1(D(Y )) = D(X).

Proof. Suppose first that φ−1(D(Y )) = D(X). Let Z be a subshift of X such that
φ(Z) = Y and y is a doubly transitive point in Y . Then there is a double transitive
point z ∈ Z such that φ(z) = y. Since the closure of the orbit of z is dense in X, we
have Z = X.

For convenience, we assume that there is a doubly transitive point φ(x) such that
x is not doubly transitive. Then there is a word w ∈ B(X) that does not occur
infinitely often to the right of x. Let B(Z) = B(X) \ {w} be the language of the
subshift Z of X.

Any word v ∈ B(Y ) occurs infinitely often on the right in φ(x). Thus, there is a
preimage u of v that occurs infinitely often on the right in x. By compactness there
is a limit point z ∈ X of {σn(x) : n ≥ 0} which contains u. But w cannot appear
in z and thus z ∈ Z. Thus v is a word in φ(Z) and v is arbitrary, which means that
φ(Z) = Y . This contradicts the fact that X is relatively minimal. □

Recall that if X is irreducible and φ : X → Y is a factor code with a bi-closing
word, then X is relatively minimal to (Y, φ) [2, Proposition 10]. Thus, by Theorem 5.2
we have:

Corollary 5.3. Let φ : X → Y be a factor code with a bi-closing word and X be
irreducible. Then φ−1(D(Y )) = D(X).

However, the converse is not true. For example, let φ : X → Y be a factor code
of degree 1 that is not one-to-one, and let X be irreducible. Since φ has degree, we
have φ−1(D(Y )) = D(X) [8, Theorem 3.2]. But Theorem 3.4 implies that φ cannot
have bi-closing words.

Note that a hyperbolic factor code cannot have bi-closing words. For example,
let X be a strictly sofic shift with the Fischer cover G = (G,L). By the proof of



14 Bi-closing words

Theorem 3.5, L∞ has degree 1. So it is hyperbolic. But L∞ cannot have bi-closing
words; for otherwise Theorem 3.4 implies that it is a conjugacy and thus X is of finite
type.

Also, a code with a bi-closing word cannot be hyperbolic; as an example, Fiebig
gives a code φ with constant factor from a non-synchronized shift to a finite type
shift [6]. Since hyperbolic maps lift the ’synchronized’ property [8, Theorem 4.2], φ
is not hyperbolic. But by Theorem 5.3 and [8, Theorem 3.3], which states that if
X is synchronized, hyperbolicity is equivalent to φ−1(D(Y )) = D(X), we have the
following.

Theorem 5.4. Let φ : X → Y be a factor code with a bi-closing word and X be a
synchronized system. Then φ is hyperbolic.
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