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Abstract. The aim of this paper is to present some new observations about w-distance
(in the sense of O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and
fixed point theorems in complete metric spaces, Math. Japonica 44, 2 (1996), 381–391) and
F -contractions (in the sense of D. Wardowski, Fixed points of a new type of contractive
mappings in complete metric spaces, Fixed Point Theory Appl., 2012:94 (2012)). Both
concepts have been examined separately a lot, but there have been few attempts to connect
them. This article is a step in filling this gap. Besides, some comments and improvements
of results in the existing literature are presented.

1. Introduction and preliminaries

1.1 w-distance

In the last thirty years, many mathematicians have introduced, in addition to the
standard metric d, various other “distances” between points in an arbitrary non-
empty set. One of them is the so-called w-distance, which was introduced by the
Japanese mathematicians Osamu Kada, Tomonari Suzuki, and Wataru Takahashi in
1995 [14]. It served them to resolve some issues of non-convex minimization and
to improve the famous results of Caristi, Ekeland and Takahashi. This version of
distance is introduced as follows:

Definition 1.1. Let (X, d) be a metric space and let a mapping p : X×X → [0,+∞)
satisfy:
(p1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;

(p2) for any x ∈ X, the function p (x, ·) : X → [0,+∞) is d-lower semicontinuous;

(p3) for any ε > 0, there exists δ > 0 such that p (z, x) < δ and p (z, y) < δ imply
d (x, y) < ε.

2020 Mathematics Subject Classification: 47H10, 54H25

Keywords and phrases: w-distance; wt-distance; F -contraction; b-metric space; metric-like
space.

43
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Then, p is called a w-distance on X.

Recall that the property (p2) means that, for all x, y ∈ X, and any sequence {yn}
which d-converges to y, p(x, y) ≤ lim inf p(x, yn) holds.

In some later papers (e.g., [11, 16]), the authors used a stronger assumption, as
follows:

Definition 1.2. A w-distance on a metric space (X, d) is called a w0-distance if, in
Definition 1.1, condition (p2) is replaced by
(p2’) for all x, y ∈ X, the functions p (x, ·) : X → [0,+∞) and p (·, y) : X → [0,+∞)
are d-lower semicontinuous.

It is clear that a w-distance has some of the properties of a metric, but may lack
some important ones. In particular, one should always have in mind the following
facts when working with w-distances.
a) p(·, ·) is not necessarily a symmetric function.

b) p(a, a) = 0 does not necessarily hold.
The following easy example illustrates these two facts.

Example 1.3 ([14]). Let X = R be equipped with the standard metric d(x, y) =
|x− y| and define p : X ×X → [0,+∞) by p(x, y) = |y| for all x, y ∈ X. It is easy
to check that p is a w-distance (see [14, Example 4]) which is not symmetric. Indeed,
for x = −1, y = 2 we have p(−1, 2) = |2| = 2 while p(2,−1) = |−1| = 1, that is
p(−1, 2) ̸= p(2,−1). Also, e.g., p(1, 1) = 1 > 0.

The following property was stated, e.g., in [20, Remark 2.2.2]. We provide an
alternate proof.

c) If x ̸= y, then q(x, y) = max {p(x, y), p (y, x)} > 0.

Proof. It is sufficient to prove that max {p (x, y) , p (y, x)} = 0 implies x = y. Indeed,
from p(x, y) = p(y, x) = 0 it follows by (p1) that also p (x, x) = 0. Now for any ε > 0,
taking for δ any positive number, we get that, for the given x, y, p(x, x) < δ and
p(x, y) < δ, and so, according to (p3), d (x, y) < ε. Since ε is arbitrary, it follows that
d (x, y) = 0, i.e., x = y. □

A part of the following property was stated without proof in [16, Remark 2.1].

d) If p is a w0-distance, then q(x, y) = max {p(x, y), p (y, x)} is a symmetric
w-distance on X.

Proof. Let x, y, z ∈ X be arbitrary. Then

q(x, z) = max{p(x, z), p(z, x)} ≤ max{p(x, y) + p(y, z), p(z, y) + p(y, x)}
= max{p(x, y), p(y, x)}+max{p(y, z), p(z, y)} = q(x, y) + q(y, z),

hence, (p1) holds for q. For x, y ∈ X fixed, both functions p(x, ·) and p(·, y) are
d-lower semicontinuous, i.e.,

lim inf
yn→y0

p(x, yn) ≥ p(x, y0), and lim inf
xn→x0

p(xn, y) ≥ p(x0, y),



Z. Kadelburg, S. Radenović 45

hold. Then

lim inf
yn→y0

q(x, yn) = lim inf
yn→y0

max{p(x, yn), p(yn, x)}

≥ max{lim inf
yn→y0

p(x, yn), lim inf
yn→y0

p(yn, x)}

≥ max{p(x, y0), p(y0, x)} = q(x, y0),

which means that q(x, y) is also d-semicontinuous (in both variables, since it is sym-
metric). Finally, for the given ε > 0 choose δ > 0 such that p(z, x) < δ and p(z, y) < δ
imply d(x, y) < ε. If q(x, y) < δ and q(y, z) < δ then p(x, y) < δ and p(y, z) < δ, and
hence d(x, z) < ε. □

Remark 1.4. Recall that a mapping σ : X ×X → [0,+∞) (where X is a nonempty
set) is called metric-like [3] if, for all x, y, z ∈ X, the following hold:
(σ1) σ(x, y) = 0 implies x = y;

(σ2) σ(x, y) = σ(y, x);

(σ3) σ(x, z) ≤ σ(x, y) + σ(y, z).
According to properties (p1), c) and d), the mapping q defined as in d) is a metric-like
on the space X; see also [11, Remark 1.12]).

e) w-distance is not necessarily a d-continuous function (in two variables).

Example 1.5 ([22]). Let X = [0, 1] ⊂ R be equipped with the usual metric and let p
be a w-distance on X given by

p(x, y) =


9, if x = 0, y ∈ X

y − x, if 0 < x ≤ y,

3x− 3y, if x > y.

Let xn =
1

n
and yn =

1

n
. Then xn → 0, yn → 0 and p(xn, yn) → 0 as n → +∞, but

p(0, 0) = 9 ̸= 0. Hence, p is not a d-continuous function.

Note that the w-distance p considered in Example 1.3 is asymmetric and
d-continuous.

For other standard examples of w-distances and their basic properties we refer to,
e.g., [14, 20,22].

We add the following two lemmas that will be, similarly as in the context of metric
spaces (see, e.g., [9, 19]), useful in the proofs of our main results. Both these lemmas
are used to prove the Cauchyness of the Picard sequence xn = Txn−1, n ∈ N, where
x0 ∈ X is a given point in a metric space X and T : X → X.

Lemma 1.6. Let {xn}n∈N∪{0} be a Picard sequence in a metric space (X, d) with
w-distance p such that

p (xn+1, xn) < p (xn, xn−1) (1)

or

p (xn, xn+1) < p (xn−1, xn) , (2)
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is satisfied for all n ∈ N. Then xn ̸= xm whenever n ̸= m.

Proof. Consider the first case (1). Suppose that xn = xm for some n < m. Then
xn+1 = Txn = Txm = xm+1 and hence

p(xm+1, xm) = p(xn+1, xn) < p(xn, xn−1) < · · · < p(xm+1, xm),

which is a contradiction. In the case (2) the proof is similar. □

Note that if one of the conditions (1), (2) is fulfilled then, for n ̸= m, it is always
max{p(xn, xm), p(xm, xn)} > 0.

Lemma 1.7. Let (X, d) be a metric space with w-distance p and let {xn} be a sequence
in X such that both p (xn+1, xn) and p (xn, xn+1) tend to 0 as n → +∞. If {xn} is
not a d-Cauchy sequence in X, then there exist ε > 0 and two sequences {mk} and
{nk} of positive integers such that nk > mk > k and the following sequences tend to
ε from above, as k → +∞:

{p (xnk
, xmk

)} , {p (xnk,xmk−1)} , {p (xnk+1, xmk
)} ,

{p (xnk+1, xmk−1)} , {p (xnk+1, xmk+1)} , . . .
as well as

{p (xmk
, xnk

)} , {p (xmk−1, xnk
)} ,

{
p
(
xmk

, xnk+1

)}
,

{p (xmk−1, xnk+1)} , {p (xmk+1, xnk+1)} , . . .

Proof. Since {xn} is not a d-Cauchy sequence, it follows by [14, Lemma 1.(iii)] that
p(xn, xm) does not tend to 0 as n,m → +∞. This means that there exist ε > 0 and
subsequences {nk} and {mk} such that mk > nk > k and

p(xnk
, xmk

) ≥ ε and p(xnk−1, xmk
) < ε.

Then, using (p1) and the fact that p (xn+1, xn) and p (xn, xn+1) tend to 0 as n → +∞,
it follows, in the same way as in metric spaces (see, e.g. [19])) that the given sequences
tend to ε from above. □

A lot of fixed point and common fixed point results in metric spaces endowed with
a w-distance have been obtained by various authors (see, for example, the articles [11,
16,17,22–24] and, in particular, the book [20] and the references therein).

This new kind of distance was also introduced in the context of b-metric spaces
where it is usually called wt-distance. Results in this environment were obtained, e.g.,
in [10].

We note also that two variants of such distance (usually called c-distance and w-
cone distance) were also introduced in cone metric spaces and tvs-cone metric spaces
in the papers [6,7] (for a survey on these kinds of spaces see [1]). Further on, several
authors obtained fixed point results in this context. We are not going to consider here
this approach.

1.2 F -contractions

In 2012, Polish mathematician Darius Wardowski published in [25] a very interest-
ing generalization of Banach Contraction Principle (BCP). He replaced the Banach’s
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condition d(Tx, Ty) ≤ λd(x, y) with

d(Tx, Ty) > 0 implies τ + F (d(Tx, Ty)) ≤ F (d(x, y)),

where τ > 0 and F : (0,+∞) → R is a strictly increasing function, satisfying some
additional conditions. Later on, these conditions were modified by several authors,
and finally shown to be redundant in the paper [18] (a bit shorter proof of this result
is presented in [9]). We note just that it follows from the monotony of the function F
that it has the left and right limit at each point t > 0. In the paper [25], Wardowski
also showed, by giving an example, that his result is strictly stronger than BCP
(although it reduces to it when F (t) = ln t is used as a “control” function).

A detailed survey on fixed point results using F -contractions in various environ-
ments (until 2021) can be found in [9].

To the best of our knowledge, the only papers where some results combining the
use of w-distance and F -contractions are [11,17].

In this paper, we present some new observations on w-distance and F -contrac-
tions, and their connection. Besides, some comments and improvements of results in
the existing literature are presented.

2. Wardowski-type results in metric spaces using w-distance

2.1 A result using w0-distance

In this subsection we consider Wardowski-type fixed point results for mappings in
metric spaces endowed with a w0-distance.

Definition 2.1. Let (X, d) be a metric space equipped with a w0-distance p and
q(x, y) = max{p(x, y), p(y, x)} be the respective symmetric w-distance (see prop-
erty d) in Section 1). Let T : X → X and let there exist τ > 0 and a strictly
increasing function F : (0,+∞) → R such that, for all x, y ∈ X,

q(Tx, Ty) > 0 implies τ + F (q(Tx, Ty)) ≤ F (q(x, y)) (3)

holds. Then T is called an (F, τ, p)-contraction.

Theorem 2.2. Let T be an (F, τ, p)-contraction on a complete metric space (X, d)
with a w0-distance p and its respective symmetric w-distance q, and let
(i) T be continuous, or

(ii) inf{q(x, u) + q(x, Tx) : x ∈ X} > 0 whenever u ∈ X and u ̸= Tu.
Then T has a unique fixed point, say z. Moreover, p(z, z) = 0.

Proof. It follows directly from the contractive condition (3) that there cannot exist
more than one fixed point of the mapping T . Moreover, if Tz=z then p(z, z)=0.
Indeed, suppose that p(z, z) > 0. Then, putting x = y = z in (3), we get τ +
F (p(z, z)) ≤ F (p(z, z)), which is a contradiction with τ > 0.

We will prove the existence of a fixed point.
Choose an arbitrary x0 ∈ X and define the Picard sequence {xn} by xn = Txn−1

for n ∈ N. If xn = xn−1 holds for some n, then xn−1 is a (unique) fixed point of T .
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Suppose, therefore, that xn ̸= xn−1 (and hence q(xn, xn−1) > 0, see property c) in
Section 1) for all n ∈ N.

Putting x = xn−1, y = xn in (3), we obtain that

τ + F (q(xn, xn+1)) ≤ F (q(xn−1, xn)). (4)

Since the function F is strictly increasing, it follows that the sequence {q(xn, xn+1)}
is strictly decreasing, and hence it has a limit q∗ ≥ 0. If q∗ > 0 then, passing to the
right limit as n → +∞ in (4), we get that τ + F (q∗ + 0) ≤ F (q∗ + 0), which is a
contradiction with τ > 0. Thus, we get that the sequence {q(xn, xn+1)} tends to 0 as
n → +∞ and, hence, both sequences {p(xn, xn+1)} and {p(xn+1, xn)} tend to 0.

In order to prove that the Picard sequence {xn} is a Cauchy sequence, we assume
the contrary and apply Lemma 1.7. Putting x = xmk

, y = xnk
in (3), we get that

τ + F (q(xmk+1, xnk+1)) ≤ F (q(xmk
, xnk

)).

Passing here to the right limit as k → +∞, we obtain τ +F (ε+0) ≤ F (ε+0), which
is a contradiction with τ > 0. Hence, {xn} must be a Cauchy sequence. Since the
metric space (X, d) is complete, the sequence {xn} converges to a point z ∈ X.

If condition (i) is satisfied, then d-continuity of the mapping T implies that Tz = z.

Suppose that condition (ii) holds. Since q(xn, xm) → 0 as m,n → +∞, us-
ing property (p2’), we get that there exists a subsequence {xnk

} of {xn} such that
q(xnk

, z) → 0 as k → +∞. If z ̸= Tz, we would obtain

0 < inf{q(x, z) + q(x, Tx) : x ∈ X} ≤ inf{q(xnk
, z) + q(xnk

, xnk+1) : k ∈ N} → 0

as k → +∞, implying that inf{q(x, z) + q(x, Tx) : x ∈ X} = 0, a contradiction. It
follows that Tz = z. □

Remark 2.3. A similar result was obtained using different methods in [11, Corollary
3.4].

Remark 2.4. We note that in the proof of the previous theorem, just the properties
of mapping q mentioned in Remark 1.4 were used. This means that Theorem 2.2 can
be treated as a result on fixed points under F -contractions for metric-like spaces.

Example 2.5. Let X = [0, 1] be equipped with standard metric d and w-distance
defined by p(x, y) = x + y [14] (in this case, obviously, q ≡ p). Let T : X → X be
given by

Tx =

{
x/2, if 0 ≤ x < 1,

1/4, if x = 1.

Then, T is a p-contraction. Indeed, for 0 ≤ x, y < 1 it is

p(Tx, Ty) =
x

2
+

y

2
=

1

2
p(x, y).

If x = 1 and 0 ≤ y < 1 it is

p(Tx, Ty) =
1

4
+

y

2
<

1

2
(1 + y) =

1

2
p(x, y).



Z. Kadelburg, S. Radenović 49

(and similarly for y = 1, 0 ≤ x < 1). If x = y = 1 it is

p(Tx, Ty) =
1

4
+

1

4
=

1

2
< 1 =

1

2
p(x, y).

Hence, for λ = 1
2 , p(Tx, Ty) ≤ λp(x, y) holds in all cases. But then, T is also an

(F, τ, p)-contraction (with F (t) = ln t and τ = ln 2).
However, T is not an F -contraction (in the sense of Wardowski). Otherwise, we

would have

τ + F (d(Tx, Ty)) ≤ F (d(x, y))

whenever d(Tx, Ty) > 0. But then, for x = 1, y = 7/8, we would get

τ + F (d(1/4, 7/16)) = τ + F (3/16) ≤ F (1/8) = F (d(1, 7/8)),

which is impossible since τ > 0 and F has to be strictly increasing.

Recall also the basic example from [25].

Example 2.6 ( [25]). Consider the set X = {xn | n ∈ N} where xn =
∑n

k=1 k,
equipped with the standard metric d and let p = d. Then, (X, d) is a complete metric
spaces. Let T : X → X be defined by T (x1) = x1 and T (xn) = xn−1, n > 1. It is
easy to see that T is not a d-contraction (hence, also not a p-contraction), but it is
an (F, τ, d)-contraction (and (F, τ, p)-contraction) with τ = 1 and F (t) = t+ ln t.

2.2 Some comments on the paper [17]

Consider Definitions 7 and 8 and subsequent Lemma 3 and Theorem 1 of the pa-
per [17]. First of all, in Definition 7 (page 4), there is a logical error – the quantifiers
are mixed: instead “for all x, y ∈ X there exists F . . . ” there should stay “there
exists F such that for all x, y ∈ X . . . ”. Then, we notice that the condition 0 ≤ λ < 1
in the relation

p(fx, fy) > 0 implies τ + F (p(fx, fy)) ≤ F (λMp(x, y))

of Definition 7 is not correct because for λ = 0 the right-hand side of the last inequality
becomes −∞, which is then a contradiction with τ > 0. Moreover, since F is supposed
to be a strictly increasing function, the right-hand side in the inequality in the relation

p(fx, fy) > 0 implies τ + F (p(fx, fy)) ≤ F (λMg
p(x, y))

of Definition 8 is strictly smaller than F (Mg
p(x, y)), i.e., the right-hand side in the

inequality of the relation

p(fx, fy) > 0 implies τ + F (p(fx, fy)) ≤ F (Mg
p(x, y))

of Theorem 2. This shows that the results stated in [17] up to Theorem 2 are redun-
dant. In other words, Theorem 1 is a consequence of Theorem 2 for 0 < λ ≤ 1.

Finally, in all the results on common fixed points, commutativity of mappings f
and g is supposed to hold, which is a very strong condition and is rarely satisfied.
It would be interesting to investigate whether some of the known compatibility-type
conditions (see, e.g., [15]) could be used instead of the commutativity (see further
comments at the end of Subsection 3.1 on a similar situation in b-metric spaces).
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Moreover, in Theorem 4, the function F (t) = ln t is used, which is of no interest,
since it is well known (already from the basic paper [25]), that Wardowski-type results
in that case easily reduce to classic ones.

3. Results in b-metric spaces with wt-distance

3.1 Some improvements of the results of paper [10]

Treating b-metric spaces as an environment for obtaining fixed point and related
results goes back to Bakhtin [4] and Czerwick [8]. There is a huge bibliography of
such results. Recall the basic definition.

Definition 3.1 ([8]). Let X be a nonempty set and s ≥ 1 be a given real number. A
mapping db : X ×X → [0,+∞) is a b-metric on X if for all x, y, z ∈ X, the following
conditions hold:

(db1) db(x, y) = 0 iff x = y,

(db2) db(x, y) = db(y, x),

(db3) db(x, z) ≤ s[db(x, y) + db(y, z)].

In this case, the pair (X, db) is called a b-metric space with parameter s.

Twenty five years after Kada et al. introduced the notion of w-distance, Hussain,
Saadati and Agrawal gave the respective definition in the case of b-metric spaces:

Definition 3.2 ([10, Definition 3.1]). Let (X, db) be a b-metric space with parame-
ter s. A mapping pb : X ×X → [0,+∞) is called a wt-distance on X if the following
conditions are satisfied:

(pb1) pb(x, z) ≤ s[pb(x, y) + pb(y, z)] for all x, y, z ∈ X;

(pb2) for any x ∈ X, the function pb (x, ·) : X → [0,+∞) is s-lower semicontinuous
on X, i.e., if, for each y0 ∈ X and each sequence {yn} converging to y0,

1
spb(x, y0) ≤

lim inf pb(x, yn) holds;

(pb3) for any ε > 0, there exists δ > 0 such that pb (z, x) < δ and pb (z, y) < δ imply
db (x, y) < ε.

For details and examples see [10].

In this subsection we show that some improvements of results in the paper [10] can
be obtained. (For the sake of simplicity, we omit the assumptions about the ordering
of the space, which are not important for our comments.)

First of all, we note that in Theorems 4.2 and 4.3 of the mentioned paper, for
the “parameter of contraction” r it is supposed that rs < 1, i.e., r ∈ [0, 1

s ). We will
show that this assumption can be relaxed to r ∈ [0, 1) in the case of the simplest
Banach-type fixed point result.
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Theorem 3.3. Let (X, db) be a complete b-metric space with parameter s > 1 and
let pb be a wt-distance on X. Suppose that T : X → X and that there exists a real
number r ∈ [0, 1) such that

pb(Tx, Ty) ≤ r pb(x, y) (5)

holds for all x, y ∈ X. If
(i) T is db-continuous, or

(ii) inf{pb(x, u) + pb(x, Tx) : x ∈ X} > 0 whenever u ∈ X and u ̸= Tu,
then there exists a unique fixed point, say z, of T and it satisfies pb(z, z) = 0. More-
over, the mapping T has the so-called property (P), i.e., for each n ∈ N, the mappings
T and Tn have the same set of fixed points.

Proof. The uniqueness of a fixed point z and the fact pb(z, z) = 0 follow easily in a
standard way.

Let us prove that for the sets of fixed points, Fix(T ) = Fix(Tn) holds for each
n ∈ N. The inclusion Fix(T ) ⊂ Fix(Tn) is obvious. For the converse, suppose that
there exists z ∈ Fix(Tn) \ Fix(T ), i.e., Tnz = z, Tz ̸= z, and so pb(Tz, z) > 0. It
follows from (5) that

pb(Tz, z) = pb(T
n+1z, Tnz) ≤ r pb(T

nz, Tn−1z) ≤ · · · ≤ rnpb(Tz, z),

hence 1 ≤ rn, a contradiction.
In order to prove the existence of a fixed point, suppose first that r ∈ [0, 1

s ). Let
x0 ∈ X be arbitrary and let {xn} be the respective Picard sequence, i.e., xn = Tnx0.
Then, using (5), it follows in a standard way that pb(xn, xn+1) ≤ rnpb(x0, x1) for each
n ∈ N and that, for m > n,

pb(xn, xm) ≤ srn

1− sr
pb(x0, x1) → 0 as m,n → +∞,

implying, by [10, Lemma 3.5], that {xn} is a db-Cauchy sequence in X. Since (X, db)
is complete, it follows that there exists limn→+∞ xn = z ∈ X. We will prove that z
is a fixed point of T .

If (i) holds, the conclusion is trivial. Suppose that (ii) holds and that Tz ̸= z.
Then

0 < inf{pb(x, z) + pb(x, Tx) : x ∈ X} ≤ inf{pb(xn, z) + pb(xn, xn+1) : n ∈ N} = 0,

a contradiction. Hence, Tz = z.
Suppose now that r ∈ [ 1s , 1). Then, for some n ∈ N, rn ∈ (0, 1

s ) holds. It follows
from (5) that, for arbitrary x, y ∈ X,

pb(T
nx, Tny) ≤ r pb(T

n−1x, Tn−1y) ≤ · · · ≤ rn pb(x, y)

holds, i.e., the mapping Tn satisfies condition (5) with parameter rn < 1
s . Hence, by

the previous part of the proof, there exists z ∈ Fix(Tn). Since Fix(Tn) = Fix(T ),
it follows that also z ∈ Fix(T ), which finishes the proof. □

Example 3.4. Let X = R be equipped with the b-metric db(x, y) = (x − y)2 with
parameter s = 2 and the wt-distance pb(x, y) = y2 (see [10, Example 3.4]). Consider
the mapping T : X → X given by Tx = 1√

2
x. Then pb(Tx, Ty) =

1
2y

2, pb(x, y) = y2
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and in order that pb(Tx, Ty) ≤ r pb(x, y) holds for all x, y ∈ X, the condition r ≥ 1
2

should hold. Hence, the condition rs = 2r < 1 could not be satisfied.
However, the condition r < 1 is clearly satisfied with r = 1

2 .

Recall now that the simplest common fixed point results for mappings S, T : X →
X can be obtained if S and T commute. Obviously, this condition is too strong,
and so it was natural to seek for weaker assumptions. Hence, several authors have
introduced various other conditions which can be used in order to prove common fixed
point results—a review of these conditions can be found in [15]. We mention here two
of them:
1◦ The self-mappings S and T on a space X (with some convergence structure) are
compatible [12] if, for each sequence {xn} inX, limn→+∞ Sxn = limn→+∞ Txn implies
that limn→+∞ STxn = limn→+∞ TSxn.

2◦ The self-mappings S and T on a nonempty set are weakly compatible [13] if, for
all x ∈ X, Sx = Tx implies that STx = TSx.

Common fixed point results in the paper [10] were obtained using the condition of
commutativity (as well as in most other papers in the literature where these problems
were treated using w-distance or wt-distance). However, it is easy to see that, e.g.,
the result of Theorem 5.4 of that paper holds true when commutativity is replaced
by a weaker condition of compatibility.

Indeed, in the proof of the mentioned theorem, a sequence {xn} in X is formed
satisfying Sxn = Txn−1, and it is proved that the sequences {Sxn} and {Txn}
converge to, say, y. By the continuity of S and T , we have that STxn → Ty and
TSxn → Sy as n → +∞, and, by the compatibility of S and T , these limits are equal,
i.e., Sy = Ty. Now the (weak) compatibility of these mappings implies in a standard
way that S and T have a common fixed point.

3.2 A Reich-type fixed point result using wt-distance

It is well known that Banach-type fixed point results can be modified in various ways
(see, e.g., the classical paper by Rhoades [21]). As a sample, we are going to show in
this subsection how Reich-type results can be deduced in the environments that we
are treating here.

Note first that assertions similar to a)– e) (Section 1) hold in the case of wt-
distance pb. In particular, if a wt-distance pb is s-lower semicontinuous in each of
its variables, then by qb(x, y) = max{pb(x, y), pb(y, x)} a symmetric wt-distance is
defined.

Recall now (see [2, Definition 2.4]) that a mapping σb : X×X → [0,+∞) is called
a b-metric-like on a nonempty set X if it satisfies, for some s ≥ 1 and all x, y, z ∈ X
the following:
(σb1) σb(x, y) = 0 implies x = y;

(σb2) σb(x, y) = σb(y, x);

(σb3) σb(x, z) ≤ s[σb(x, y) + σb(y, z)].
We see that, similarly as in Remark 2.4, qb(x, y) is a b-metric-like on X.
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Theorem 3.5. Let (X,σb) be a complete b-metric-like space with parameter s > 1
and let T : X → X be a mapping satisfying

σb(Tx, Ty) ≤ a σb(x, y) + b σb(x, Tx) + c σb(y, Ty) (6)

for some a, b, c ≥ 0 with s(a+ b) + c < 1, and for all x, y ∈ X. If
(i) T is continuous, or

(ii) inf{σb(x, u) + σb(x, Tx) : x ∈ X} > 0 whenever u ∈ X and u ̸= Tu,
then T has a unique fixed point, say z. Moreover, σb(z, z) = 0.

Proof. Let us prove first that T cannot have two distinct fixed points. Indeed, if z1 and
z2 are such points, then σb(z1, z2) > 0 and (6) implies that σb(z1, z2) ≤ a σb(z1, z2).
It follows that a ≥ 1, a contradiction.

Denote r = a+b
1−c (so that r < 1

s ). Let x0 ∈ X be arbitrary and let {xn} be the
respective Picard sequence, i.e., xn = Tnx0. Then it follows from (6) that

σb(xn, xn+1) ≤ r σb(xn−1, xn)

for n ∈ N. Applying [2, Lemma 2.14], we conclude that limm,n→+∞ σb(xn, xm) = 0,
i.e., {xn} is a Cauchy sequence in (X,σb). Since this space is complete, the Picard
sequence converges to some (unique – see [2, Proposition 2.10]) z ∈ X and

lim
n,m→+∞

σb(xn, xm) = lim
n→+∞

σb(xn, z) = σb(z, z) = 0

holds.
Suppose that the mapping T is continuous in (X,σb). It follows that

limn→+∞ σb(Txn, T z) = σb(Tz, Tz). On the other hand σb(Tn, T z) = σb(xn+1, T z),
so σb(xn+1, T z) tends to σb(Tz, Tz) as n → +∞. Since the sequence {xn} has a
unique limit, it follows that Tz = z.

If the condition (ii) is satisfied, equality Tz = z can be proved in the same way as
in the proof of Theorem 2.2. □

As a consequence, we deduce the following

Corollary 3.6. Let (X, db) be a complete b-metric space with parameter s, let pb be
a wt-distance on X that is s-lower semicontinuous with respect to both variables and
denote qb(x, y) = max{pb(x, y), pb(y, x)}. Let T : X → X be a mapping satisfying

qb(Tx, Ty) ≤ a qb(x, y) + b qb(x, Tx) + c qb(y, Ty)

for some a, b, c ≥ 0 with s(a+ b) + c < 1, and for all x, y ∈ X. If
(i) T is continuous, or

(ii) inf{qb(x, u) + qb(x, Tx) : x ∈ X} > 0 whenever u ∈ X and u ̸= Tu,
then T has a unique fixed point, say z. Moreover, pb(z, z) = 0.

3.3 F -contractions in b-metric spaces with a wt-distance

Taking into account known results in b-metric-like spaces, in particular [5, Corollary
2.14], we come to the following b-metric version of Theorem 2.2.

Corollary 3.7. Let (X, db) be a complete b-metric space with parameter s, let pb be
a wt-distance on X that is s-lower semicontinuous with respect to both variables and
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denote qb(x, y) = max{pb(x, y), pb(y, x)}. Let T : X → X be continuous and such that
there exist a real number τ > 0 and a strictly increasing function F : (0,+∞) → R
such that, for all x, y ∈ X,

qb(Tx, Ty) > 0 implies τ + F (qb(Tx, Ty)) ≤ F (qb(x, y))

holds. Then T has a unique fixed point, say z. Moreover, pb(z, z) = 0.

4. Some suggestions for further work

There are several other classical fixed point results which have not yet been discussed
in some of the environments that we have treated in this paper, or using Wardowski’s
method. Such are, for example, the results of Boyd and Wong, of Nemitzky and
Edelstein, and many others.

Acknowledgement. The authors are indebted to the referees for careful reading
of the text and suggestions that helped us to improve it.
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