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ON THE LOCAL CONTROLLABILITY FOR OPTIMAL CONTROL
PROBLEMS

A. V. Arutyunov and S. E. Zhukovskiy

Abstract. We consider an optimal control problem on the fixed interval of time with
the right endpoint constraint. We introduce the concept of controllability for this problem.
The main result of the paper states that if for the optimal control problem the Pontrya-
gin maximum principle fails on the given admissible process then this process satisfies the
controllability condition.

1. Introduction

The paper is dedicated to the following question: how is the local extremality of a
control related to the controllability in the neighbourhood of this control? We will
illustrate this question with the following elementary example.

Given positive integers s and k such that s ≥ k, a continuously differentiable
function f : Rs → R and a continuously differentiable mapping F : Rs → Rk, consider
the optimization problem

f(x) → extr, F (x) = 0. (1)

Let us assume that a given point x ∈ Rs is admissible, i.e. F (x) = 0. For the sake of
simplicity, we will assume that f(x) = 0 as well.

There are two cases. In the first case, the Lagrange principle fails at x, i.e.
λ0f

′(x) + λF ′(x) ̸= 0 for each (λ0, λ) ̸= 0. Then the vectors f ′(x), F ′
1(x), . . . ,

F ′
k(x) are linearly independent. The inverse function theorem therefore implies that

there exist ε > 0 and const > 0, so that for each (y0, y) ∈ Oε(0) the system
of equations f(x) = y0, F (x) = y has a solution x that satisfies the inequality
|x− x̄| ≤ const(|y0|+ |y|). Here, Oε(0) is an ε-neighbourhood of zero in Rk+1,

The second case: the Lagrange principle applies at the x, i.e. there exists a non-
zero vector (λ0, λ) ∈ R× Rk such that λ0f

′(x) + λF ′(x) = 0.
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These considerations lead us to the following conclusion. If the Lagrange principle
fails for the problem (1) at x, then in this point local controllability property holds,
i.e. for each (y0, y) close to zero, the system of equations f(x) = y0, F (x) = y has
a solution that satisfies a priori estimate. This assertion does not provide sufficient
optimality condition. It is a simple task to construct an example when x is not a
solution to the problem (1) and there is no local contralability at x. For example, one
can take the zero mapping F (x) ≡ 0 and a function f for which f ′(x) ̸= 0.

2. Formulation of the optimal control problem

Consider the control system

ẋ = f(x, u, t), x(t0) = x0, u(t) ∈ U(t), t ∈ [t0, t1]. (2)

Here t ∈ [t0, t1] is the time, x ∈ Rn is a state variable, the left endpoint x0 is fixed, and
u(t) ∈ U(t) for a.a. t ∈ [t0, t1] is a control. The set-valued mapping U : R ⇒ Rs is
given. We assume that U is measurable and essentially bounded (see e.g. [1,10]). The
assumption of boundedness for U(·) is only necessary for simplicity of formulation.

Let us assume that the mapping f : Rn × Rs × [t0, t1] → Rn is continuous, the

mapping f(·, u, t) is differentiable for every u and t and
∂f

∂x
is continuous. We con-

sider the class of admissible controls consisting of all measurable, essentially bounded
functions u(·) on [t0, t1] such that u(t) ∈ U(t) for a.a. t ∈ [t0, t1].

Definition 2.1. A pair of functions (x(·), u(·)) is called an admissible process, if x(t)
is a solution to the Cauchy problem

ẋ = f(x, u(t), t), x(t0) = x0

on [t0, t1] and u(·) is an admissible control.

Consider the right endpoint constraint

ψ1(x1) = 0, x1 = x(t1). (3)

Here ψ1 : Rn → Rk1 is a given continuously differentiable mapping and k1 ≥ 0 is a
given non-negative integer. This condition is called the transversality condition. For
the sake of generality, we can also include the dependence on x(t0) in this constraint,
but we do not do so for the sake of simplicity of formulation.

If k1 = n and ψ1(x1) ≡ x1 − x̄1, where x̄1 is a given vector, then we obtain a
problem with the fixed right endpoint x̄1. If k1 = 0, then we get a problem with a
free right endpoint.

Let (x̂(·), û(·)) be an admissible process that satisfies the transversality condi-
tion (3). Set x̂(t1) := x̂1.

Consider the optimization problem for the functional

J(u) :=

∫ t1

t0

f0(x(t), u(t), t)dt+ ψ0(x1) → extr (4)
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over the set of all admissible pairs (x(·), u(·)) satisfying the transversality condi-
tion (3). Here, the given function f0 satisfies the same smoothness conditions as f
and a given function ψ0 is assumed to be continuously differentiable.

We understand the locality of the optima in the sense of the metric given by the
formula

ρ(û, u) = meas{t ∈ [t0, t1] : û(t) ̸= u(t)} (5)

where û(·) and u(·) are admissible controls and meas is the Lebesgue measure. Note
that this metric is complete (see e.g. [2, 8]).

Definition 2.2. We will say that the admissible process (x̂(·), û(·)) satisfies the max-
imum principle, if there exists a nonzero vector (λ0, λ1) ∈ R × Rk1 such that the
transversality condition

p(t1) = − ∂l

∂x1
(λ0, λ1, x̂(t1)) (6)

holds and the condition of maximum of Hamiltonian with respect to u

H(λ0, p(t), x̂(t), û(t), t) = max
u∈U(t)

H(λ0, p(t), x̂(t), u, t) for a.a. t ∈ [t0, t1]. (7)

holds. Here

l(λ0, λ1, x1) = λ0ψ0(x1) + ⟨λ1, ψ1(x1)⟩, (8)

p(t) – is an absolutely continuous solution to the linear with respect to p nonhomo-
geneous equation

ṗ = −∂H
∂x

(λ0, p(t), x̂(t), û(t), t) = −p(t)∂f
∂x

(x̂(t), û(t), t) + λ0
∂f0
∂x

(x̂(t), û(t), t), (9)

the function l is the small Lagrangian. The Hamiltonian H is defined by the formula
H(λ0, p, x, u, t) = −λ0f0(x, u, t) + ⟨p, f(x, u, t)⟩.

It is important to note that we do not assume here that λ0 ≥ 0 as in Pontryagin’s
maximum principle. Example 4.1 below shows that this assumption makes no sense
in the context of the main result of the paper. The property formulated in Defini-
tion 2.2 can therefore be regarded as a local extremality principle, which allows both
a minimum and a maximum of J at û.

Proposition 2.3. Assume that an admissible process satisfies the maximum princi-
ple. If the regularity condition rank∂ψ1

∂x1
(x1) = k1 holds, then

|λ0|+ |p(t)| ≠ 0 ∀ t ∈ [t0, t1]. (10)

Proof. Let (10) fail. Then λ0 = 0 and p(τ) = 0 for some τ ∈ [t0, t1]. Due to the
linearity of (9) we therefore have p(t) = 0 for every t ∈ [t0, t1]. Therefore, (6) and
the regularity assumptions imply that λ0 = 0 and λ1 = 0, which contradicts the
maximum principle. □

Definition 2.4. We will say that the admissible process (x̂(·), û(·)) satisfies the
controllability condition, if there exists δ > 0 and const > 0 such that for every
e = (e1, e0) ∈ Rk1 × R satisfying the inequality |e1|+ |e0 − J(û)| ≤ δ there exists an
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admissible process (x(·), u(·)) such that

ψ1(x(t1)) = e1, J(u) = e0 (11)

and ρ(u, û) ≤ const
(
|e1|+ |e0 − J(û)|

)
. (12)

Here ρ is defined by formula (5).

Our aim is to show that if the admissible process (x̂(·), û(·)) does not satisfy the
maximum principle, then it satisfies the condition of controllability.

Theorem 2.5. Let the admissible process (x̂(·), û(·)) does not satisfy the maximum
principle, i.e. for every λ = (λ0, λ1) ̸= 0 and for the corresponding solution to the
adjoint system (6) and (9), the condition of maximum of Hamiltonian (7) fails over
a set of positive measure. Then this process satisfies the controllability condition (see
Definition 2.4).

The proof of this theorem is presented in the next section.
Theorem 2.5 cannot be strengthened by replacing its assumption with the assump-

tion that û is not a weak extreme point. This fact is shown in Example 4.2.

3. Proof of the main result

Since the considered optimal control problem is not autonomous, i.e. it contains the
explicit dependence on t, we assume without loss of generality that x̂(t) ≡ 0. It follows
that x0 = x̂(t1) = 0. For the sake of simplicity, let us also assume that J(û) = 0.

Let us construct a finite-dimensional approximation of the optimal control problem
(see e.g. [4,5]). There exists a countable set of admissible controls {ui(·)} such that the
set {u1(t), u2(t), . . .} is everywhere dense in U(t) for a.a. t ∈ [t0, t1] (see e.g. [14, Ch.
I, Sect. 7]). If U is not dependent on t, then one can take a countable dense subset
of U and take {ui(·)} as the corresponding constant functions.

The standard existence and uniqueness theorems (see [9, Theorem IV.2]) imply
that there exists δ0 > 0 such that for every admissible control u(·) that satisfies the
inequality meas{t ∈ [t0, t1] : u(t) ̸= û(t)} ≤ δ0 there is the only solution to the Cauchy
problem

ẋ = f(x, u(t), t), x(t0) = x0, t ∈ [t0, t1]

defined on the entire segment [t0, t1].
Recall (see e.g. [12, Ch. IX, Sect. 5, 6]) that a point τ for a given function φ :

[t0, t1] → Rn is called an approximative continuity point if there exists a measurable
set E such that the restriction of φ to E is continuous, φ(t) → φ(τ) as t→ τ , t ∈ E,
and τ is a density point of the set E, i.e.

DτE := lim
h→0

meas([τ − h, τ + h] ∩ E)

2h
= 1 as h→ 0.

As is known, for a measurable function on [t0, t1], almost all points t ∈ [t0, t1] are the
Lebesgue points and the approximative continuity points.
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For every δ > 0 that satisfies the inequalities δ < t1 − t0 and δ < δ0 there exists
a compact subset M̃(δ) ⊂ [t0, t1] such that the following assertions are valid. The

measure of M̃(δ) is less or equal to (t1 − t0)− δ, all functions û and ui are continuous

on M̃(δ), the mapping f is continuous on Rn × Rs × M̃(δ) (see [4, Lemma Π.2.5]),

all points of M̃(δ) are the Lebesgue points of the functions t 7→ f(x̂(t), û(t), t) and

t → f(x̂(t), ui(t), t). The same assertions apply to f0 and M̃(δ). It follows from the

Cantor-Bendixson theorem (see e.g. [12, Ch. II, Sect. 6]) that from the set M̃(δ), a
countable subset can be excluded, so that the set becomes perfect, i.e. it is closed
and consists only of its limit points. Let us denote this perfect set by M(δ). Without
loss of generality, we assume that the set-valued mapping is decreasing, i.e. δ > δ′ ⇒
M(δ) ⊂M(δ′).

Take a dense countable subset {ti}, i = 2, 3 . . . in M(δ) such that ti ̸= t0, t1. Take
a positive integer N ≥ δ−1. Then for every positive integer j ≤ N there exist points
tj,1(N) < . . . < tj,N+1(N) in M(δ) such that

tj ∈ [tj,1(N), tj,N+1(N)], tj,N+1(N)− tj,1(N) ≤ δ0
N

(13)

and

[tj,1(N), tj,N+1(N)]
⋂

[tj′,1(N), tj′,N+1(N)] = ∅ ∀ j ̸= j′ ∈ {1, . . . , N}.
These points tj,1(N), . . . , tj,N+1(N) exist because M(δ) is closed and consists only
of its limit points. Here δ0 is chosen above.

Denote by UN the set of N ×N - matrices with non-negative elements ξj,p, j, p ∈
{1, . . . , N} such that 0 ≤ ξi,j ≤ c(N). Here

c(N) =
1

2
min{ts,i+1(N)− ts,i(N) : s, i ∈ {1, . . . , N}} > 0.

Let us assign to the matrix ξ ∈ UN an admissible control u(t, ξ) defined by the
formula

u(t, ξ) =

{
up(t) if ∃ j ∈ {1, . . . , N} : t ∈ (tj,p(N), tj,p(N) + ξj,p), 1 ≤ p ≤ N,

û(t) otherwise.

This construction implies that

meas{t ∈ [t0, t1] : u(t, ξ) ̸= û(t)} ≤ N
δ0
N

= δ0

for every ξ ∈ UN . There is therefore the only mapping X(t, ξ) that assigns to each
matrix ξ ∈ UN the value at point t of the solution of the Cauchy problem

ẋ = f(x, u(t, ξ), t), x(t0) = x0, t ∈ [t0, t1], 0 ≤ ξj,p ≤ δ(N).

Set X(ξ) = X(t1, ξ). Also note that X(t, 0) ≡ 0 due to the assumption made above
that x̂(t) ≡ 0, t ∈ [t0, t1].

It is known that this mapping is continuous in a neighbourhood of zero and dif-
ferentiable at zero with respect to the set UN (see [4, pp. 73, 85–86]).

Set k = k1 + 1. Define the mapping FN : UN → Rk by the formula

FN (ξ) = (ψ1(X(ξ)), J(u(·))).
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A point ξ = 0 corresponds to the given control û and satisfies the identity FN (0) =
(ψ1(x̂1), J(û)) = 0.

Two cases can occur. In the first case, for some N and for the mapping FN the
Robinson condition 0 ∈ intF ′

N (0)UN holds. Then it follows from Robinson’s theorem
(see e.g. [13]) that by decreasing δ > 0 we obtain that there exists const > 0 for each
e = (e1, e0) ∈ Rk1 × R1 which satisfies the inequality |e| ≤ δ the equation FN (ξ) = e
has a solution ξ that satisfies the inequality |ξ| ≤ const|ε|. Here |ξ| = meas{t ∈
[t0, t1] : u(t, ξ) ̸= û(t)}.

Note that the smoothness assumption of Robinson’s theorem applies here for FN
at zero (for more details see [4]).

The second case: 0 ∈ brF ′
N (0)UN for every sufficiently large N. Here br stands for

the boundary of a set.

The set of non-negative N ×N -matrices satisfying the inequality 0 ≤ ξj,p ≤ δ(N)
is convex and the variational equation is linear. Therefore, the set F ′

N (0)UN is convex
and has zero on its boundary. Therefore, the finite-dimensional separation theorem
implies that for sufficiently large N there exists a non-zero vector dN ∈ Rk such that

lim
ξj,p→0+

⟨dN ,
FN (ξ)− FN (0)

ξj,p
⟩|ξ=0 ≥ 0 ∀ j, p ∈ {1, . . . , N}.

So if ξj,p > 0 we have

∂

∂ξj,p
⟨dN , FN (ξ)− FN (0)⟩|ξ=0 ≥ 0 ∀ j, p ∈ {1, . . . , N}. (14)

Let us show that the admissible process (x̂(·), û(·)) fulfills the maximum principle.
This contradiction to the assumption of the theorem completes the proof.

Set dN = λN = (λ0,N , λ1,N ). Since dN ̸= 0, we obtain by normalizing the vector
λN that |λN | = |λ0,N |+ |λ1,N | = 1. For an infinite number N , which we only consider
for the first coordinate, λ0,N is sign-definite. For simplicity, let us assume that it is
non-negative. We want to show that the process (x̂(·), û(·)) satisfies the maximum
principle with λ0 ≥ 0.

In fact, in the transition to a subsequence, we will assume that λ0,N → λ0 ≥
0, λ1,N → λ1 and λ = (λ0, λ1), |λ| = λ0 + |λ1| = 1. Let us now consider (14).

Assuming that N is fixed and the matrix ξ is such that ξj,p is its only positive
component, we use that FN is differentiable at zero and its derivative can be found
using the fundamental matrix of the system ẏ = ∂f

∂x (x̂(t), û(t), t)y, t ∈ [t0, t1] (see
e.g. [11]).

From (14) it follows that

∂

∂ξj,p
⟨λ1,N , ψ1(X(ξ))⟩ |ξ=0

+λ0,N
∂

∂ξj,p

(∫ t1

t0

f0(t, ξ)dt+ (ψ0(X(ξ))− ψ0(X(0)))

)
|ξ=0 ≥ 0 ∀ j, p ∈ {1, . . . , N},

where f0(t, ξ) = f0(X(t, ξ), u(ξ, t), t) − f0(x̂(t), û(t), t). Here we use the identities
x̂ = 0, ψ1(X(0)) = 0 and J(û) = 0.
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This inequality and the definition of the small Lagrangian l imply

∂

∂ξj,p
l(λ0,N , λ1,N , X(ξ))|ξ=0 + λ0,N

∂

∂ξj,p

(∫ t1

t0

f0(t, ξ)dt

)
|ξ=0 ≥ 0, ∀ j, p ∈ {1, . . . , N}.

Denote by pN the solution of the equation

ṗN = −pN (t)
∂f

∂x
(x̂(t), û(t), t) + λ0,N

∂f0
∂x

(x̂(t), û(t), t)

on [t0, t1] with the endpoint constraint pN (t1) = − ∂l
∂x1

(λ0,N , λ1,N , x̂(t1)). This prob-
lem has the only solution.

The inequality obtained, the formula for pN and the formula for the derivative in
ξj,p imply

ξ−1
j,p

(
−⟨pN (t1), X(ξ)⟩+ λ0,N

∫ t1

t0

f0(t, ξ)dt

)
+ κ(ξ) ≥ 0.

Here and in the following κ(ξ) → 0 as ξj, p→ 0+. The Newton-Leibniz formula and
the relationship X(t0, ξ) ≡ 0 imply

ξ−1
j,p

∫ t1

t0

(
− d

dt
⟨pN (t), X(t, ξ)⟩+ λ0,Nf0(t, ξ)

)
dt+ κ(ξ) ≥ 0.

Since X(t, 0) ≡ 0, we have∫ t1

t0

⟨Hx(λ0,N , pN (t), x̂(t), u(t, ξ), t), X(t, ξ)⟩ dt

=

∫ t1

t0

⟨Hx(λ0,N , pN (t), x̂(t), û(t), t), X(t, ξ)⟩ dt+ o(ξj,p).

The last inequality implies∫ t1

t0

(〈
− d

dt
(pN (t)), X(t, ξ)

〉
− ⟨Hx(λ0,N , pN (t), x̂(t), û(t), t), X(t, ξ)⟩

−H(λ0,N , pN (t), x̂(t), u(t, ξ), t) +H(λ0,N , pN (t), x̂(t), û(t), t)

)
dt+ o(ξj,p) ≥ 0.

Using (9) we therefore obtain∫ t1

t0

(
H(λ0,N , pN (t), x̂(t), û(t), t)−H(λ0,N , pN (t), x̂(t), u(t, ξ), t)

)
dt+ o(ξj,p) ≥ 0.

The point tj,p(N) is the Lebesgue point of the functions

Hp(t) = H(λ0,N , pN (t), x̂(t), up(t), t),

H(t) = H(λ0,N , pN (t), x̂(t), û(t), t)

for each N and j, p ∈ {1, . . . , N}. So, the obtained inequality and the definition of the
control u(t, ξ) imply that∫ t1

t0

(
H(λ0,N , pN (t), x̂(t), û(t), t)−H(λ0,N , pN (t), x̂(t), u(t, ξ), t)

)
dt+ o(ξj,p)

= ξj,p(H(λ0,N , pN (tj,p(N)), x̂(tj,p(N)), û(tj,p(N)), tj,p(N))
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−H(λ0,N , pN (tj,p(N)), x̂(tj,p(N)), up(tj,p(N)), tj,p(N))) + o(ξj,p) ≥ 0.

Dividing this inequality by ξj,p > 0 and passing to the limits as ξj,p → 0, we obtain

H(λ0,N , pN (tj,p(N)), x̂(tj,p(N)), û(tj,p(N)), tj,p(N))

≥H(λ0,N , pN (tj,p(N)), x̂(tj,p(N)), up(tj,p(N)), tj,p(N))

for each j, p ≤ N.

Fix the indices j, p. This inequality holds for an infinite set of numbers N . The
definition of pN (·) implies that these functions converge uniformly to the solution of
(6), (9). Furthermore, tj,p(N) → tj as N → ∞. Passing to the limit as N → ∞ since
the corresponding functions are continuous on M(δ), we obtain that

H(λ0, p(tj), x̂(tj), û(tj), tj) ≥ H(λ0, p(tj), x̂(tj), up(tj), tj)

for each j and p.

Note that for each j the sequence {up(tj)} is dense in U(tj). Since the functions
f and f0 are continuous in u, we obtain that

H(λ0, p(tj), x̂(tj), û(tj), tj) ≥ H(λ0, p(tj), x̂(tj), u, tj) ∀u ∈ U(tj).

for each j ∈ {1, 2, . . .}. The sequence {tj} is dense in M(δ) . Moving to the limit
as j → ∞, we obtain the condition of the maximum of the Hamiltonian (7) holds
for each t ∈ M(δ). Due to the arbitrariness of the choice of δ and since the union of
the sets M(δ) is a set of full measure in [t0, t1], we obtain that the condition of the
maximum of the Hamiltonian (7) holds for a.a. t ∈ [t0, t1].

The contradiction obtained completes the considerations for the case when λ0,N ≥
0 for infinitely many N. If λ0,N < 0 for all sufficiently large N , the analogous consid-
erations apply with the opposite sign.

4. Examples

The following simple example shows that the extremality assumption in Theorem 2.5
is essential.

Example 4.1. Let n = 1, t0 = 0, t1 = 1, f(x, u, t) = u, U = [0, 1], J(u) =
∫ 1

0
udt,

x0 = 0, x1 is free, the transversality condition and ψ0 are absent.

The minimum in this problem is û ≡ 0. The corresponding trajectory x̂ is also
a zero function. It is a simple task to ensure that the equation J(u) = −e0 has no
solutions for every e0 > 0.

If we consider the same control system and take the functional J with the opposite

sign J(u) = −
∫ 1

0
udt, then we obtain that the maximum is reached at û ≡ 0. This

provides an answer when the maximum is studied for the problem under consideration.

The following example shows that the assumptions of the theorem cannot be
strengthened as follows. The assumption that the admissible process does not satisfy
the maximum principle cannot be replaced by the assumption that either the assump-
tion of the theorem holds or the admissible process is not a weak minimum. In the
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following example, the maximum principle holds and the admissible process is not a
weak minimum, however the condition of local controllability is not fulfilled.

Example 4.2. Let n = 1, t0 = 0, t1 = 2π, f(x, u, t) = u, U = [−1, 1], J(u) =∫ 2π

0
(u2 − x2)dt, x0 = 0, x1 = 0, i.e. the two end points x0 = 0 and x1 = 0 are

fixed and the functional ψ0 is absent. This is a well-known problem of calculus of
variations.

Pontryagin’s maximum principle applies to the admissible process (0, 0), since
λ0 = 1, λ1 = 0 and p(t) ≡ 0. At the same time, since 2π > π, the zero trajectory on
[0, 2π) has an adjoint point (see [10]). Therefore, there exists a sequence of admissible
controls {ui} such that |ui(t)| ≤ 1/i ∀ t ∈ [0, 2π], the corresponding process (ui, xi)
is admissible and J(ui) < 0. The zero admissible process is therefore not a weak local
minimum. It is also not a weak local maximum. In fact, −J does not satisfy necessary
minimum condition, since the Legandre condition for û = 0 fails. So û = 0 is not a
weak local extreme point.

We will say that the admissible process (x̂, û) is a Pontryagin’s minimum if for
every positive integer k > ess supt∈[t0,t1] |û(t)| there exists ε = ε(k) > 0, so that
for every admissible process (x(·), u(·)) that satisfies the inequalities ρ(û, u) ≤ ε and
|u(t)| ≤ k, it holds that J(û) ≤ J(u).

We want to show that for the zero process the local controllability condition fails.
In fact, it satisfies the sufficient conditions of Pontryagin’s minimum form [4, p. 85–
86]. Therefore there exists δ > 0 such that J(0) ≤ J(u) for each admissible (x(·), u(·))
for which ρ(u, 0) < δ. Therefore, (0, 0) is the Pontryagin minimum for the problem
under consideration. Therefore, for all sufficiently small δ > 0 the equation J(u) = −δ
has no solution u such that ρ(u, 0) < δ.

5. Conclusion

We have considered the optimal control problem (2), (4). For this problem, it is shown
that if an admissible process (x̂(·), û(·)) does not satisfy the maximum principle, then
this process satisfies the controllability condition.

The obtained assertion can be weakened by excluding the assumption of essential
boundedness of the set-valued mapping U (see e.g. [14, I.7] or [7, 1.5.1]). In fact,
take any positive integer k0 > ess supt∈[t0, t1] |û(t)|. For each positive integer i, the set
{u : u ∈ U(t), u ∈ Bk0+i} is essentially bounded in t ∈ [t0, t1] (here BR is a closed
ball centered at zero with radius R). If we apply Theorem 2.5 to the pair (x̂, û) and
move on to the limit as i→ ∞, we conclude the considerations.

Another approach to controllability was proposed in [3, 6]. It is based on the
second-order conditions for optimal control problems.
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