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Abstract. An extension of the p-center problem, called the p-next center problem, is
considered in this paper. In practice, it has been shown that centers can close suddenly
due to a problem (accident, staff shortage, technical problem, etc.). In this case, customers
should proceed to the backup center - the one closest to the closed center. Both the p-center
problem and the p-next center problem are NP-hard, so approximation methods are suitable
for solving them. In this paper, an efficient solution approach based on Skewed Variable
Neighborhood Search (SVNS) is proposed for the p-next center problem. The performance
of the proposed SVNS method is evaluated on a set of pmed instances with up to 900 nodes.
The obtained computational results are presented and compared with the best results from
the literature, confirming the efficiency and stability of the proposed method in solving the
p-next center problem.

1. Introduction

The standard p-center problem was first introduced in 1965 by Hakimi in [5]. It is one
of the most studied problems in combinatorial optimization and applied mathematics
in general, as it is widely used in practice. For a given set of n locations, the goal
is to find exactly p locations (p < n) for centers and assign each user to its nearest
center in such a way that the maximal distance from a user to its nearest center is
minimal.

If there is no method to solve a certain problem in polynomial time, this problem
is called an NP-hard problem. This basically means that these problems cannot be
solved by any exact method in a reasonably short time. The main advantage of exact
methods is that they provide optimal solutions, if such solutions exist. Despite the
fact that combinatorial optimization problems usually have a finite number of feasible
solutions, this number is often very large, especially for high-dimensional problems,
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and exact methods are practically useless in this case. On the other hand, it is often
not possible to apply exact methods because there is no suitable mathematical model
to which they could be applied or the model is too complex. In this case, it is often
desirable to obtain solutions of high quality, but in a short time. For all these reasons,
approximate methods are not only frequently used to solve such difficult problems,
but they are often the only possible ones.

The p-center problem is one of the most studied NP-hard combinatorial optimiza-
tion problems [8] due to its important practical applications, e.g. in public services
such as hospitals, police stations, fire stations, but also for deployment of taxi sta-
tions, parking lots, storage rooms, etc. Given its complexity, numerous approximation
methods for its solving have been proposed in the literature [11]. In this paper, we
consider an extension of the p-center problem, called the p-next center problem. Some
unpredictable situations may occur forcing some centers to close. Natural disasters
such as earthquakes, floods, forest fires, storms, etc. can lead to the collapse of a cen-
ter. In addition, different types of problems can result with the same outcome, e.g.
power failure, lack of staff, technical malfunctions, etc. It can be assumed that a user
cannot know in advance whether a center is closed. If a user arrives at a closed center,
they should proceed to the so-called backup center. This backup center should be a
center that is on the shortest distance from the closed primary center. For example,
one cannot know in advance whether an ATM is out of service. If this is the case
upon his arrival, the user would go to the ATM closest to the closed one. The centers
should be determined in such a way that the maximal distance of a user to the nearest
backup center via the primary center is minimal. The p-next center problem under
consideration is also NP-hard as an extension of the p-center problem. The described
differences between p-center and p-next-center problems can be illustrated by the ex-
ample shown in Figure 1. For a given set of n = 7 locations, p = 3 centers are to
be determined. The optimal solution for the p-center problem is {A,B,D} (marked
with ♦), and the objective function value is 12. The distance between user C and its
nearest center A is 12 (marked with the dashed line), and this is the largest distance
among all users. For the p-next center problem, the optimal solution is {A,B,C} and
the objective function value is 31. The distance between the user F and its nearest
center B is 11, and the distance between the center B and its backup center A is 20,
so the total distance is 31. In this case, this is the greatest distance among all users.

Figure 1: Optimal solution for p-center problem (left) and p-next center problem (right) for
n = 7, p = 3
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The p-next center problem was defined in 2015 by Albareda-Sambola et al. in [1].
The authors were motivated by a power distribution problem that occurred due to
several earthquakes in Spain. They formulated several mathematical models for this
problem and compared them. In the study by López-Sánches et al. [10] from 2018, a
Greedy Randomized Adaptive Search (GRASP) and Variable Neighborhood Search
(VNS), as well as their hybridization, were proposed as approximate methods for
solving the p-next center problem. According to the computational results presented
in [10] on a set of pmed instances with up to 200 nodes, the hybrid method obtained
results of better quality compared to GRASP and VNS. In 2021, the Filtered VNS
method was developed by Ristić et al. in [13], which is based on the idea of using
different criteria for the acceptance of a solution approximation. The Filtered VNS
method was tested on the same instances as in [10], extended by some larger examples
with up to 900 nodes. In [9], the authors proposed three variants of evolutionary
approach with a biased random-key Genetic Algorithm that incorporates a multi-
parent strategy and a path-relinking as an intensification search procedure. They also
presented optimal solutions for 401 out of extended set of 416 instances by running
the exact solver CPLEX for one week and using 24 threads, but starting from the
best solutions found by some other algorithms. Mousavi in [12] integrated local search
with the combination of two strategies to exploit flat subspaces in the search space.
The first strategy is to accept not only downhill moves, but also some flat moves. Let
x and x′ be two solutions with the same objective function value. The move from
the solution x to the solution x′ is called a flat move and should be analyzed using
some heuristic function. In this way, the flat moves can be distinguished and the
more promising ones can be accepted. The second strategy is to always accept flat
moves unless forbidden by tabu restriction. The proposed algorithm was tested on
132 pmed instances with up to 200 nodes and outperformed the algorithm from [10].

The rest of the paper is organized as follows. In Section 2, the mathematical
formulation of the p-next center problem is given. Sections 3 and 4 contain the
description of the proposed approach to solve the considered problem. Experimental
results are presented in Section 5 and a statistical analysis of the obtained results is
given. General remarks and conclusions are given in Section 6 along with some future
research directions.

2. Mathematical formulation of the problem

Let A be the set of users, each of them being a candidate for a center, let p be the total
number of centers to be allocated, and let D = (dij)n×n be the distance matrix. In
order to formulate the p-next center (PNC) problem as an integer linear programming
problem, two sets of binary variables are defined:

yj =

{
1, if there is a center at the location j,

0, otherwise.
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xij =

{
1, if j is the nearest center to the location i (different from i),

0, otherwise

Note that xij = 1 has a different meaning depending on whether there is a center
at location i or not. If there is a center at location i, this means that a center j is
a backup center for the center i. Otherwise, xij = 1 means that the center j is the
primary center for the user i. The mathematical formulation of the PNC problem
can be written as follows [1]:

min w∑
j∈A

yj = p, (1)

∑
j∈A, j ̸=i

xij = 1, i ∈ A, (2)

xij ≤ yj i, j ∈ A, i ̸= j, (3)

yj +
∑

k∈A, dik>dij

xik ≤ 1 i, j ∈ A, i ̸= j, (4)

w ≥
∑

k∈A,k ̸=j

djkxjk, j ∈ A, (5)

w ≥ dij(xij − yi) +
∑

k∈A,k ̸=j

djkxjk, i, j ∈ A, i ̸= j, (6)

xij ∈ {0, 1}, i, j ∈ A, i ̸= j, (7)

yj ∈ {0, 1}, j ∈ A. (8)

The goal is to minimize the value of the continuous variable w, which represents the
maximal distance from the user to its backup center (passing through the primary cen-
ter). The model’s constraints have the following meaning: there are exactly p centers
established (constraint (1)), each user is allocated to exactly one primary center, and
each primary center has exactly one backup center (constraint (2)). A user cannot be
allocated to the location where the center is not established (constraints (3)). Con-
straints (4) are there to ensure that each user is allocated to the nearest established
center. The constraints (5) set w to the correct value, i.e. the longest distance from a
user to its backup center, and the constraints (6) ensure that all users with the same
primary center are redirected to the same backup center, if necessary, and that the
total distance in this case is equal to the distance from the user to the primary center
plus the distance from the primary center to the backup center. The constraints (7)
and (8) define the binary nature of the variables.
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3. Skewed VNS method

Combinatorial optimization problems often have a large number of local optima that
are not global optima. The number of local optima can increase exponentially with
increasing dimensions of the problem. Such problems are very difficult to solve be-
cause classical approaches that guarantee finding the true global optimum take an
unacceptably long time and often get stuck in one of the local optima, even for small
problem dimensions. Therefore, many existing approaches for solving combinato-
rial optimization problems rely on (meta)heuristic methods. Metaheuristic methods
provide general ideas and techniques that can be applied to a large number of prob-
lems [4,15,16]. Each step in a metacheuristic approach should be adapted to a specific
problem to be solved. The main task is to find a balance between two processes: the
local improvement of a solution and a diversification technique that should ensure
that different parts of a search space are visited and also help escaping from local
optima that are not global.

Variable Neighborhood Search (VNS) is a metaheuristic method proposed by
Hansen and Mladenović in [6] in 1997. Since then, it has become one of the most
popular metaheuristics as it achieves very promising results that usually outperform
other approaches from the literature for both discrete and continuous optimization
problems. A specific feature of the VNS method is the change of the neighborhood
in which the local search is performed. This is done in a systematic way in order
to avoid local optima. The method is based on the fact that a local optimum in
a certain neighborhood does not necessarily have to be a local optimum in another
neighborhood. On the other hand, the global optimum is the local optimum for any
neighborhood.

The basic VNS algorithm (BVNS) combines these ideas with the stochastic ap-
proach, which is achieved by the so-called shaking step. Let N = {N1, . . . , Nkmax} be
a set of predefined neighborhood structures such that Nk(x), 1 ≤ k ≤ kmax defines a
k-th neighborhood of the solution x. The main idea of the shaking step is to examine
these different neighborhood structures of a given solution x in order to escape the
local optimum. To do this, one chooses another solution x′ from the neighborhood
Nk(x) and then performs some local search procedure with x′ as the initial solution.
If the obtained local optimum improves the objective function value, the algorithm
moves on to this new solution and continues the search from there. Otherwise, the
exploration of the larger neighborhood is considered in the shaking step. This neigh-
borhood change guides the VNS while exploring the solution space.

The Skewed VNS (SVNS), explained below, performs especially well for problems
with separated and far apart local optima. For such problems, it is sometimes impos-
sible to reach distant optima using only the shaking procedure performed within the
limited neighborhoods and the local search, as the BVNS method allows only moves
that improve the current solution. On the other hand, if the significantly larger neigh-
borhoods are considered, VNS behaves like a multistart algorithm. To overcome these
limitations, SVNS accepts as new solutions not only improved solutions, but in some
cases also those that are worse than the current best solution. A solution x′′ obtained
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from the local search is evaluated not only by its objective function value, but also
by its distance to the current best solution x∗. The distance is defined by the metric
ϱ(·, ·). In other words, moving from x∗ to x′′ is allowed if f(x′′) ≤ f(x∗)+αϱ(x∗, x′′),
where f(·) is the objective function and α is a chosen parameter.

4. Main contribution

In this paper, an SVNS method for solving the p-next center problem is proposed.
The main focus is on the development of an efficient local search method in order to
obtain a high-quality solution in the shortest possible time.

The solution of the p-next center problem is represented by an integer vector of
length p containing the indices of the locations that are chosen as centers. Once the
locations of the centers are known, each user can be allocated to its nearest (primary)
center, and a backup center can easily be found for each primary center.

For the method to be successful, the chosen neighborhood structure must be suit-
able for the problem. In this paper, the neighborhoods for the shaking step and the
local search are defined as follows: Nk(x) = {x′ ∈ S : d(x, x′) = k}, where S is the fea-
sible set, i.e. a set of all p-dimensional vectors with mutually different location indices,
and d(x, x′) is defined as the total number of different locations chosen as centers for
the solutions x and x′. For example, if x = [1, 3, 6, 5, 9] and x′ = [6, 2, 4, 1, 9], x and
x′ have three equal locations for centers (1,6,9) and differ in two (3 and 5 in x, 2 and
4 in x′), i.e. d(x, x′) = 2. In the shaking step, neighborhoods Nk, k = 1, 2, . . . , kmax

are used, and the local search is performed in the neighborhood N1 of the solution
x′. The cardinality of the N1 neighborhood is p(n− p).

The local search has a major influence on the quality of the SVNS solutions ob-
tained. On the one hand, the local search improves the current solution, on the other
hand, one must not explore a part of the solution space for too long. This could
lead to a local optimum that is not the global optimum. It is very important that
a local search method is efficient but not very time consuming. The local search in
this paper is performed using two procedures called: Move evaluation and Update.
A similar technique was first mentioned in 1983 in [19], but its application started
only in 1997 when it was used for solving the p-median problem in [7] and later for
the standard p-center problem in [11]. To the best of the author’s knowledge, this
technique has not yet been used for the p-next center problem, and this is one of the
main contributions of this paper. As defined above, the neighborhood N1(x) contains
all solutions x′ that have exactly one center different than the solution x. Before the
search begins, two vectors c1 and c2 of length n are to be determined for the current
solution x:

c1(i)− the closest center to the location i,

c2(i)− the second closest center to the location i, i = 1, 2, . . . , n.

To simplify the notation, it is assumed that the set of given locations isA = {1, 2, . . . , n}.
If there is a center at location i, then c1(i) is a backup center for center i. If the lo-
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cation i is a user, then c1(i) is the primary center for i. If this center fails, then user
i should proceed to its backup center, and that is c1(c1(i)). Note that c1(c1(i)) is
generally not the same as c2(i), since the former is the second closest center from
location i but passing through the primary center, and the latter is the second closest
center directly from i to that center. The goal is to examine the entire neighborhood
N1(x) and find the solution x′ ∈ N1(x) that represents the local minimum in this
neighborhood. This is done using the procedure Move evaluation which, for a given
location in /∈ x, finds a center out ∈ x so that the value of f((x ∪ in) \ out) is mini-
mal. In other words, for a given location in, this procedure finds the best choice of
a center out in the current solution to be exchanged. This procedure also calculates
the value f((x∪ in) \ out), but it does not perform the interchange. The interchange
is performed by the Update procedure, which also updates the values for the arrays
c1 and c2 for the newly obtained solution (x ∪ in) \ out.

4.1 Move evaluation procedure

Changing one element from the solution implies that one existing center should leave
the solution and be replaced by a location that was not a center until that swap.
For a given location that enters the solution (becomes a center), the Move evaluation
procedure determines which center from the solution should be replaced by it, so that
the objective function value is as small as possible. Two vectors r and z of length
n play an important role in this procedure. In order to describe the procedure, the
notation given in the Table 1 is used.

n the number of locations
p the number of centers to be established
d(i, j) the distance between the locations i and j, i, j = 1, 2, . . . , n.
x vector of length p containing the indices of the locations that are

centers (current solution)
in location that is becoming the part of solution (center)
c1(x), c2(x) arrays described above
r(j) the largest distance from a user allocated to the center j = x(l),

l = 1, 2, . . . , p to the center j, increased by the distance between j
and its backup center, among all the users allocated to the center j.

z(j) the largest distance between a user that was allocated to the center
j = x(l), l = 1, 2, . . . , p and its new primary center increased by the
distance between primary and backup center, under the assumption
that center j is removed from the solution

out center that is to be eliminated from the current solution (to be
determined)

f objective function value for the solution (x ∪ in) \ out (to be
calculated)

Table 1: Notation for the Move evaluation procedure
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Swapping two elements in ∈ A \ x and out ∈ x can affect all other users in the
following way:

� in becomes the primary center for some users because it is closer to them than
their current primary center. All of these users will need to update both their primary
centers and their backup centers.

� in becomes the backup center of an existing center and thus a new backup center
for some users. For all these users, only the backup centers need to be updated.

� out was the primary center for some users. For all these users, both the primary
and the backup centers have to be determined.

� out was a backup center for some users. In this case, only their backup centers
need to be determined.

By adding the location in to the solution, some of the users can gravitate to this new
center, which means that the new center in is closer to them than their current primary
center, i.e. d(i, in) < d(i, c1(i)), i ∈ A \ x. For all these users, adding the center in to
the solution would change their primary center and consequently their backup center.
Let the set of all these users be denoted by X. The new objective function value could
be reached for some of these users, so the value f ′ = max

i∈X
{d(i, in)+d(in, c1(in)} should

be determined. On the other hand, the remaining users could change their primary
or backup center due to the removing of a center out ∈ x from the solution. This
center is still to be determined. For each center out′ ∈ x, the remaining users can be
divided into the following groups:

� Users whose primary and backup center would not change due to the removing
of the center out′. Let Xj be a set of all such users with the same primary center j
(j, c1(j) ̸= out′) and d(i, j) < d(i, in), i ∈ Xj . Although the removal of the center
out′ from the solution had no effect on the users from Xj , the backup center for j
could change due to the addition of the center in to the solution. Therefore, a new
backup center new backup j for j should be determined among in and c1(j), and for
each Xj the value r(j) = maxi∈Xj{d(i, j) + d(j, new backup j)} is to be calculated.
The value maxj r(j) is a candidate for the new objective function value.

� Users u who would lose their primary or backup center by removing the center
out′. For the users whose primary center was out′, i.e. c1(u) = out′, the new primary
center new primary u should be chosen between in and c2(u) in the following way:

new primary u =

{
in, if d(u, in) < d(u, c2(u)),

c2(u), otherwise.

After the primary center for all these users u has been changed, the new backup center
should also be determined. If the primary center for user u was replaced by in (i.e.
new primary u = in), its new backup center new backup u should be determined by:

new backup u =

{
c1(in), if c1(in) ̸= out′,

c2(in), if c1(in) = out′.
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If, on the other hand, the primary center for the user u was replaced by c2(u), two
cases must be considered in order to find the new backup center new backup u:

1. If c1(c2(u)) ̸= out′, then new backup u is determined in the following way:

new backup u =

{
in, if d(c2(u), in) ≤ d(c2(u), c1(c2(u))),

c1(c2(u)), otherwise.

2. If c1(c2(u)) = out′, then new backup u is found by:

new backup u =

{
in, if d(c2(u), in) ≤ d(c2(u), c2(c2(u))),

c2(c2(u)), otherwise.

� For users u whose backup center was out′ (c1(c1(u)) = out′), a new backup
center new backup u should be determined in the following way:

new backup u =

{
in, if d(c1(u), in) < d(c1(u), c2(c1(u))),

c2(c1(u)), otherwise.

In the last two cases, the value z(out′) should be calculated as the maximal distance
between each user u, that was using the center out′ as a primary or backup center,
and a new backup center (passing through the new primary center).

For a given location in and a fixed center out′ ∈ x, the objective function value is

f((x ∪ in) \ out′) = max{f ′, max
j ̸=out′

r(j), z(out′)}.

The goal is to determine the best center out to be deleted from the current solution
x, and that is the one that minimizes the expression above. i.e.

out = arg min
out′∈x

{f((x ∪ in) \ out′)} = arg min
out′∈x

{max{f ′, max
j ̸=out′

r(j), z(out′)}}.

In order to efficiently calculate the values f ′, z(j), r(j), j = 1, . . . , n, every user is
considered only once. Before that, the initial values must be set as follows:

f ′ = 0,

r(x(j)) = min{d(x(j), in), d(x(j), c1(x(j)))},

z(c1(x(j))) = max
{
z(c1(x(j))),min{d(x(j), in), d(x(j), c2(x(j)))}

}
, j = 1, 2, . . . , p.

At the beginning, for each user u it is established whether he gravitates towards the
new center in, i.e. if d(u, in) < d(u, c1(u)). If that is the case, the value f ′ should
be updated: f ′ = max{f ′, d(u, in) + d(in, c1(in)}. If the value f ′ is changed in this
step, current user u must be saved: critical := u , as well as his backup center
backupcritical := c1(in). If the user u does not gravitate towards the center in, then
the values z(c1(u)), z(c1(c1(u))) and r(c1(u)) are updated for this user:

r(c1(u)) = max
{
r(c1(u)),

min{d(u, c1(u)) + d(c1(u), c1(c1(u))), d(u, c1(u)) + d(c1(u), in)}
}
, u ̸= in,

r(c1(in)) = max{r(c1(in)), d(in, c1(in))},



J. Tasić 75

z(c1(u)) = max{z(c1(u))),
d(u, new primary u) + d(new primary u, new backup u), }u ̸= in,

z(c1(in)) = max{z(c1(in))), d(in, c2(in))}.
Since the primary center c1(u) for user u is being deleted, the new primary center
new primary u should be found between in and c2(u), depending on which one is
closer to u. If new primary u = in, then the new backup center new backup u is
c1(in) or c2(in) (in case that c1(u) = c1(in), i.e. that c1(in) is the center that is
being removed from the solution). If new primary u is c2(u), then the new backup
center new backup u is to be chosen between c1(c2(u)) and in or c2(c2(u)) and in, if
c1(c2(u)) = c1(u).

z(c1(c1(u))) = max{z(c1(c1(u)))), d(u, c1(u)) + d(c1(u), new backup u)}
Since the backup center for the user u is deleted, the new backup center new backup u
should be found between in and c2(c1(u)), whichever is closer to c1(u).

When all the users have been analyzed, values z(x(j)), j = 1, 2, . . . , p must be
updated similar as mentioned above. This is necessary because once certain location
is removed from the solution and it is not a center anymore, that location should be
considered as a user. The distance from that location to its backup center should be
calculated and it is a candidate for the objective function value after the swap. Next
step is to find the values g1 and g2:

g1 = max{r(x(l)) | l = 1, 2, . . . , p}, i.e. g1 = r(x(l∗)) for some l∗ ∈ {1, 2, . . . , p},
g2 = max

l ̸=l∗
{r(x(l)) | l = 1, 2, . . . , p}.

The final step is to construct an array g(l), l = 1, 2, . . . , p in a following way:

� If l ̸= l∗, then g(l) = max{f ′, z(x(l)), g1}, If x(l) = backupcritical, then the value
f ′ must be modified as f ′ = f ′ − d(in, backupcritical) + d(in, c2(in)). The elimination
of the center x(l) is considered in this step, which could have been used as a backup
center for in while updating the value f ′. If this is the case, a new backup center for
in must be found and the value of f ′ must be corrected before determining the value
of g(l).

� If l = l∗, then g(l) = max{f ′, z(x(l)), g2}, If x(l) = backupcritical, the similar
correction as above must be made : f ′ = f ′ − d(in, backupcritical) + d(in, c2(in)).

The best center out to be removed from the solution x, and objective function
value f of the solution (x∪ in) \ out are found in the following way: f = min{g(l)|l =
1, 2, . . . , p} and let l∗∗ be the index of the found minimum, then out = x(l∗∗).

4.2 Update procedure

As already mentioned, Move evaluation procedure does not swap the given center in
and the found center out. This swapping is performed by the Update procedure, as is
the calculation of the values of the vectors c1 and c2 for the new solution (x∪in)\out,
more precisely the update of the closest and second closest centers for the users
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affected by this swap. The same notation is used as for the Move evaluation procedure.
The Update procedure for the PNC problem does not differ from this procedure for
the PC problem [11]. For each location u that is such that c1(u) = out, the new
primary center must be found (i.e. c1(u) must be updated) between the locations
in and c2(u), depending on which is closer to the location u. If this is c2(u), this
center becomes the new c1(u), and then the second closest center for u must be
found (c2(u) must be updated). For all remaining locations, such that c1(u) ̸= out,
if d(u, c1(u)) > d(u, in), which means that in is the closest center for the user u, the
new value for c2(u) should be set to c1(u), and the new value for c1(u) must be set
to in. On the other hand, if d(u, c1(u)) < d(u, in) (i.e. the closest center remains
the same), and if d(u, in) < d(u, c2(u)), then only center c2(u) should be changed to
in. On the other hand, if d(u, in) > d(u, c2(u)), and if c2(u) = out new center c2(u)
should be found.

4.3 Local search

The local search is implemented using two procedures already mentioned: Move eval-
uation and Update. The search starts from a certain initial solution x∗. For this
solution, the arrays c1 and c2 must be found. Let f∗ be the objective function value
obtained by the solution x∗. In addition, the so-called critical user i∗ must be found.
The critical user is the one that travels the maximal distance f∗ to its backup center,
i.e. f∗ = d(i∗, c1(i

∗)) + d(c1(i
∗), c1(c1(i

∗))). The following steps should be repeated
while there is improvement in objective function value:

� For every location in that is not a part of the solution x∗ and that is satisfied:

d(i∗, in) + d(in, c1(in)) < d(i∗, c1(i
∗)) + d(c1(i

∗), c1(c1(i
∗)))

start the Move evaluation procedure in order to find location out and objective func-
tion value f obtained by the solution (x∗∪ in)\out. Let (in∗, out∗) be the best pair of
locations to be interchanged, i.e. the solution (x∗∪ in∗)\out∗ is the one that gives the
minimum value of the objective function among all solutions from the neighborhood
N1(x

∗).

� If f((x∗ ∪ in∗)\out∗) ≥ f∗, the search is finished. If this is not the case, the
following changes should be made: f∗ := f((x∗ ∪ in∗)\out∗), using the procedure
Update new values for x∗, c1, c2 must be set, as well as the new critical user i∗ and
previous step should be started again.

In this way, the local search of the N1 neighborhood with the best improvement
strategy is implemented in an efficient way.

4.4 Skewed VNS for PNCP

The proposed SVNS for the PNCP consists of the following steps.
Step 1: Initiallization.

1.1. Set the value of parameter kmax and define Neighborhood structuresN1, . . . , Nkmax
.
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1.2. Generate the initial solution x∗ at random, construct the corresponding arrays
arrays c1 and c2. Calculate the objective function value f∗ of the solution x∗.

1.3. Copy the values x∗, c1, c2 and f∗ to the variables x′, c′1, c
′
2, f

′.

1.4. Set the values of parameters α and maximal number of iterations iter max
(stopping criteria parameter)

1.5. Define the distance ϱ(x1, x2) as the total number od differing locations for the
solutions x1 and x2.

Step 2: Set the parameter iter to 1.

Step 3: Repeated the following steps until iter ≤ iter max:

3.1. Set the parameter k to 1.

3.2. Until k ≤ kmax and iter ≤ iter max repeat the following steps:

3.2.1. c′1 = c1 and c′2 = c2
3.2.2. Apply the shaking step starting from the solution x′ and c′1 and c′2 in order to

obtain the solution x shake. This is done by randomly choosing k different
locations to become part of the solution and k centers to be removed from
the solution, and then by executing the Update procedure k times.

3.2.3. Increase the parameter iter by one.

3.2.4. Using x shake as the initial solution and c′1 and c′2, apply the described local
search method based on the Move evaluation and Update procedures. Let
x′′ be the resulting solution and f ′′ the objective function value obtained
by x′′.

3.2.5. If f ′′ < f∗ then the x∗ should change: x∗ = x′′, f∗ = f ′′.

3.2.6. If f ′′ < f ′ + αϱ(x′, x′′) then: x′ = x′′, f ′ = f ′′, c1 = c′1, c2 = c′2 and k = 1,
else the k parameter should be increased by one.

5. Experimental results

The proposed method was tested on the instances pmed1-pmed8 using the first n
nodes and various values for p. The instances are available at [2]. Before the SVNS
method can be implemented, distance matrices must be generated for each pmed
dataset. This can be done using the Floyd-Warshall algorithm.

The SVNS method was tested on a total of 290 instances, which were divided into
four groups:

� small instances (with up to 50 nodes)

� medium instances (between 60 and 200 nodes)

� large instances (containing between 250 and 400 nodes)

� additional 40 instances used in [13] (containing between 100 and 900 nodes)
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The testing was done on the desktop computer with Intel Core i7-11700 3.6GHz
processor and 16GB of RAM in a 64bit Windows 10 environment, using the parameter
values given in Table 2.

Instance itermax kmax α number of executions
small 500 5 0.1 20

medium 5000 5 0.1 20
large 1000 5 0.1 20

additional 1000 5 0.1 20

Table 2: SVNS parameter values

The CPLEX 20.1 solver was used to obtain the optimal solutions. The complete
results of the proposed SVNS method for all 290 instances can be found on the [18].
The SVNS results for the set of small instances are presented in Table 3 and for the
set of large instances in Tables 4 and 5 in the Appendix.

The following data is specified for each instance in addition to its name: n−
number of nodes, p− number of centers, best− the best result among all 20 executions,
#best− number of executions (out of 20) where best was found, tbest− average time
that elapsed, until best was found for the first time (in seconds), ttot− average total
time elapsed (in seconds), agap− average gap between the values obtained and best
(in percent) and std dev− standard deviation of the values obtained.

The optimal solution was found for all 50 small instances. The parameters agap
and std dev were at most 0.94 and 4.09 respectively. The optimal solution was found
for 122 out of 126 medium instances. For the remaining 4 instances, SVNS provided
the upper bounds, which are marked with ”*”. The parameters agap and std dev
were at most 4.00 and 2.1 respectively. An optimal solution was found for 61 out
of 72 large instances, and upper bounds were found for the remaining 11 instances.
The parameters agap and std dev are at most 9.86 and 5.75 respectively. Additional
group of instances was used for testing in the work [13]. For 13 out of 42 instances
from this group, the upper bounds were improved, while SVNS found the same value
as the Filtered VNS for the remaining 29 instances, but in a shorter time.

5.1 Comparison with the previously proposed methods

In order to compare the results obtained with the SVNS method with the results
of previous work, the Friedman test proposed by Demšar [3] is performed. This is
a non-parametric test based on a ranking of all methods to be compared for each
instance. The best method for a given instance is ranked 1, the second best is ranked
2 and so on. If the results are equal, the tied methods should receive the average
rank. For this part, a subset of 63 instances that appeared in all previous works
is considered. The first criterion for ranking is the objective function value. If two
or more methods achieve the same value, the less time consuming method gets the
better (lower) rank. To scale the times given in the previous work, the CPU ranks
from CPU Benchmark [20] were used. A Table with the ranks can be found at [17].
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The hypotheses to be tested are: the null hypothesis, which states that there
are no significant differences between the methods compared and that the differences
in solution quality are random, and the alternative hypothesis, which states that at
least one method produces statistically different results from the other methods. The
recommended test significance is α = 0.05. The average ranks are calculated for each
method. If the method i has the rank rij for the instance j, then the average rank Ri

for the method i is calculated as 1
N

∑N
j=1 rij , where N is the total number of instances

to be compared (in this case 63). The average ranks for the compared methods are:
3.333 for GRASP-VNS hybrid from [10], 4.571 for Filtered VNS from [13], 4.079 for
Evolutionary approach from [9], 1.4289 for Local Search from [12] and 1.619 for SVNS.
For N = 63 instances and k = 5 methods for comparison, using the formula:

χ2
F =

12N

k(k + 1)

(
k∑

l=1

R2
k − k(k + 1)2

4

)
,

the value χ2
F = 209.37 is calculated. This value is greater than the critical value 9.49

for α = 0.05 and df = k − 1 = 4 [14], so the null hypothesis is rejected. According to
Friedman, there are significant differences between the tested methods. To determine
which of the methods differ, the Nemenyi test is used. Two methods are significantly
different if their average ranks differ by at least the critical difference CD. The value

CD is calculated as follows: CD = qa

√
k(k+1)

6N , and in this case CD = 0.7685, for

qa = 2.728 [3]. This means that the results of the SVNS and LS methods differ
significantly from those of the three previously proposed methods.

6. Conclusion

This paper considers the p-next center problem, assuming that one or more centers
may suddenly fail due to various problems. In this case, the users arriving at the
closed center should be redirected to the backup center. An SVNS method using the
local search that relies on the Move evaluation procedure and the Update procedure
is suggested. All the elements of the metaheuristic have been adjusted to the specific
features of the p-next center problem. The proposed method has been tested on the
pmed set of instances, and the results were compared with the previously published
results on this topic. From all the presented, it can be concluded that the proposed
method is suitable for solving the p-next center problem and the statistical analysis
shows that the presented results are significantly better than the results of three
previously proposed methods.
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p-next center problem, Comput. Oper. Res., (2018).
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Appendix

Instance n p best #best tbest(s) ttotal(s) agap(%) std dev

pmed1 10 5 84 20 0.00 0.01 0 0

pmed1 20 5 120 20 0.00 0.02 0 0

pmed1 20 10 95 20 0.00 0.01 0 0

pmed1 30 5 126 20 0.00 0.03 0 0

pmed1 30 10 95 20 0.00 0.02 0 0

pmed1 40 5 144 20 0.00 0.06 0 0

pmed1 40 10 111 20 0.01 0.04 0 0

pmed1 40 20 89 20 0.00 0.03 0 0

pmed1 50 20 89 20 0.01 0.04 0 0

pmed2 10 5 121 17 0.00 0.00 0.87 2.07

pmed2 20 5 147 20 0.00 0.02 0 0

pmed2 20 10 99 20 0.00 0.01 0 0

pmed2 30 5 169 20 0.00 0.03 0 0

pmed2 30 10 110 20 0.00 0.03 0 0

pmed2 40 5 164 20 0.00 0.06 0 0

pmed2 40 10 112 19 0.01 0.05 0.94 4.09

pmed2 40 20 96 20 0.01 0.04 0 0

pmed2 50 10 140 20 0.00 0.06 0 0

pmed2 50 20 99 20 0.00 0.05 0 0

pmed3 10 5 77 20 0.00 0.00 0 0

pmed3 20 5 145 20 0.00 0.02 0 0

pmed3 20 10 77 20 0.00 0.01 0 0

pmed3 30 5 157 20 0.00 0.04 0 0

pmed3 30 10 122 20 0.00 0.02 0 0

pmed3 40 5 157 20 0.00 0.06 0 0

pmed3 40 10 105 20 0.00 0.04 0 0

pmed3 40 20 77 20 0.00 0.04 0 0

pmed3 50 10 125 15 0.01 0.06 0.4 0.69

pmed3 50 20 87 20 0.00 0.05 0 0

pmed4 10 5 126 20 0.00 0.00 0 0

pmed4 20 5 139 20 0.00 0.02 0 0

pmed4 20 10 125 20 0.00 0.01 0 0

pmed4 30 5 173 20 0.00 0.04 0 0

pmed4 30 10 122 20 0.00 0.03 0 0

pmed4 40 20 85 20 0.00 0.031 0 0

pmed4 50 10 126 20 0.00 0.06 0 0

pmed4 50 20 91 20 0.01 0.05 0 0

pmed5 10 5 125 20 0.00 0.00 0 0

pmed5 20 5 139 20 0.00 0.02 0 0

pmed5 20 10 91 20 0.00 0.01 0 0

pmed5 30 5 155 19 0.01 0.04 0.03 0.14

pmed5 30 10 120 20 0.00 0.03 0 0

pmed5 40 5 164 20 0.00 0.05 0 0

pmed5 40 10 127 20 0.00 0.04 0 0

pmed5 40 20 91 20 0.00 0.03 0 0

pmed5 50 10 121 20 0.00 0.06 0 0

pmed5 50 20 89 12 0.01 0.04 0.45 0.55

Table 3: Results for small pmed instanaces with 10 ≤ n ≤ 50, 5 ≤ p ≤ 20
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Instance n p best #best tbest(s) ttotal(s) agap(%) std dev

pmed11 250 30 44 12 1.56 2.26 2.5 3.80

pmed11 250 50 42 5 0.88 1.69 2.5 1.76

pmed11 250 70 42 20 0.43 1.16 0 0

pmed11 250 90 42 20 0.13 0.91 0 0

pmed11 300 60 51 20 0.26 2.05 0 0

pmed11 300 80 51 20 0.10 1.55 0 0

pmed11 300 100 51 20 0.05 1.31 0 0

pmed11 300 150 51 20 0.02 1.01 0 0

pmed12 250 30 48* 5 1.64 2.12 3.96 3.29

pmed12 250 50 45* 1 0.63 1.70 5 2.32

pmed12 250 70 43 4 0.72 1.25 1.98 1.101

pmed12 250 90 43 19 0.36 0.99 0.12 0.51

pmed12 300 60 72 20 0.03 1.16 0 0

pmed12 300 80 72 20 0.03 0.88 0 0

pmed12 300 100 72 20 0.02 0.75 0 0

pmed12 300 150 72 20 0.02 0.92 0 0

pmed13 250 30 48* 3 1.41 2.09 5.83 4.18

pmed13 250 50 44 1 1.16 1.77 5.45 2.32

pmed13 250 70 44 16 0.68 1.26 0.80 1.65

pmed13 250 90 44 20 0.21 1.02 0 0

pmed13 300 60 43* 1 1.74 2.33 7.09 3.99

pmed13 300 80 41* 2 1.09 1.85 5.12 2.66

pmed13 300 100 39 5 1.22 1.71 2.31 1.60

pmed13 300 150 39 20 0.34 1.25 0 0

pmed14 250 30 60 20 0.42 2.16 0 0

pmed14 250 50 60 20 0.14 1.57 0 0

pmed14 250 70 60 20 0.05 0.97 0 0

pmed14 250 90 60 20 0.04 0.74 0 0

pmed14 300 60 60 20 0.20 1.91 0 0

pmed14 300 80 60 20 0.13 2.09 0 0

pmed14 300 100 60 20 0.07 1.25 0 0

pmed14 300 150 60 20 0.02 1.05 0 0

pmed15 250 30 49 15 1.17 2.05 0.51 0.88

pmed15 250 50 49 20 0.36 1.54 0 0

pmed15 250 70 49 20 0.12 1.03 0 0

pmed15 250 90 49 20 0.07 0.82 0 0

pmed15 300 60 44 17 1.15 2.01 0.34 0.81

pmed15 300 80 44 20 0.61 1.99 0 0

pmed15 300 100 44 20 0.30 1.76 0 0

pmed15 300 150 44 20 0.03 0.99 0 0

Table 4: Results for large pmed instanaces with 250 ≤ n ≤ 400, 30 ≤ p ≤ 200
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Instance n p best #best tbest(s) ttotal(s) agap(%) std dev

pmed16 350 40 37* 1 3.14 4.77 9.86 5.75

pmed16 350 70 34* 12 1.86 2.94 2.35 3.03

pmed16 350 90 33 2 1.26 2.33 2.73 0.91

pmed16 350 120 33 15 1.14 2.45 0.76 1.31

pmed16 400 80 34* 17 8.75 12.87 0.74 1.83

pmed16 400 100 33 4 5.71 9.77 2.42 1.21

pmed16 400 140 33 15 2.48 6.53 0.76 1.31

pmed16 400 200 33 20 0.73 4.37 0 0

pmed17 350 40 39* 19 2.33 4.44 0.13 0.56

pmed17 350 70 37 14 1.65 2.69 1.35 2.18

pmed17 350 90 37 19 0.68 2.10 0.27 1.18

pmed17 350 120 37 20 0.23 1.59 0 0

pmed17 400 80 37 18 6.08 11.16 0.41 1.29

pmed17 400 100 37 20 3.09 9.37 0 0

pmed17 400 140 37 20 0.70 6.02 0 0

pmed17 400 200 37 20 0.15 4.04 0 0

pmed18 350 40 50 20 0.24 4.45 0 0

pmed18 350 70 50 20 0.08 2.35 0 0

pmed18 350 90 50 20 0.05 1.74 0 0

pmed18 350 120 50 20 0.02 1.31 0 0

pmed18 400 80 50 20 0.48 9.33 0 0

pmed18 400 100 50 20 0.42 7.23 0 0

pmed18 400 140 50 20 0.19 4.86 0 0

pmed18 400 200 50 20 0.02 3.99 0 0

pmed19 350 40 38* 1 2.47 4.40 6.84 3.05

pmed19 350 70 35 1 1.99 2.955 5.57 2.11

pmed19 350 90 35 12 1.60 2.38 1.14 1.40

pmed19 350 120 35 20 0.62 1.76 0 0

pmed19 400 80 34* 2 9.47 13.04 6.62 3.07

pmed19 400 100 32 4 7.13 9.72 6.41 4.01

pmed19 400 140 32 19 3.22 6.48 0.16 0.68

pmed19 400 200 32 20 0.35 4.06 0 0

Table 5: Results for large pmed instanaces with 250 ≤ n ≤ 400, 30 ≤ p ≤ 200
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