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ON BETTER APPROXIMATION ORDER FOR THE NONLINEAR
FAVARD-SZÁSZ-MIRAKJAN OPERATOR OF MAXIMUM

PRODUCT KIND

Sezin Çit and Ogün Doğru

Abstract. Using maximum instead of sum, nonlinear Favard-Szász-Mirakjan operator
of maximum product kind was introduced. The present paper deals with the approximation
processes for this operator. Especially in a previous study, it was indicated that the order of
approximation of this operator to the function f under the modulus is

√
x/n and it could

not be improved except for some subclasses of functions. Contrary to this claim, under some
special conditions, we will show that a better order of approximation can be obtained with
the help of classical and weighted modulus of continuities.

1. Introduction

For f ∈ C[0,∞), the classical Favard-Szász-Mirakjan operators are defined as

Sn(f ;x) = e−nx
∞∑
k=0

f

(
k

n

)
(nx)

k

k!

were introduced in [16].
The construction logic of nonlinear operators of the maximum product type, which

use the maximum instead of the sum, is based on the studies [8,9,14] (for details, see
also, [6]).

There are some other notable articles such as [2–5,7], which we will remind you in
chronological order, that various nonlinear operators of the maximum product type
have been introduced and their approximation and convergence properties have been
studied.

Note that the paper [2] is the first one in which uniform convergence rates and
shape-preserving properties are obtained with a remarkable approach, which is then
used in the paper [7].
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In particular, in [5] the approximation properties, convergence rate and shape
preserving properties of the maximum product type Favard-Szász-Mirakjan operator
are investigated.

At this point, let us recall the following well-known concept of the classical module
of continuity:

ω (f, δ) = max {|f (x)− f (y)| ; x, y ∈ I, |x− y| ≤ δ} . (1)

The approximation order for the Favard-Szász-Mirakjan operator of the maximum

product type can be found in [5] using the continuity modulus as ω
(
f ;
√

x/n
)
.

The main goal of this paper is to obtain a better order for the Favard-Szász-
Mirakjan operator of the maximum product type using the classical and the weighted
continuity modulus.

2. The concept of nonlinear maximum product operators

Before the main results, we will recall basic definitions and theorems about nonlinear
operators from [6–8].

Over the set of R+ we consider the operations ∨ (maximum) and “·” product.
Then (R+,∨, ·) has a semiring structure and is called a maximum product algebra.

Let I ⊂ R be a bounded or unbounded interval, and

CB+ (I) = {f : I → R+ : f continuous and bounded on I } .
Let us take the general form of Ln : CB+(I) → CB+(I), as

Ln (f) (x) =

n∨
i=0

Kn (x, xi) f(xi) or Ln (f) (x) =

∞∨
i=0

Kn (x, xi) f(xi),

where n ∈ N, f ∈ CB+(I), Kn (., xi) ∈ CB+ (I) and xi ∈ I, for all i. These opera-
tors are non-linear, positive operators and also satisfy the following pseudo-linearity
condition of the form

Ln (αf ∨ βg) (x) = αLn (f) (x) ∨ β Ln (g) (x) ,∀α, β ∈ R+, f, g : CB+ (I) .

In this section, we present some general results for this type of operator which we
will use later.

Lemma 2.1 ([7]). Let I ⊂ R be bounded or unbounded interval,

CB+ (I) = {f : I → R+ : f continuous and bounded on I } ,
and Ln : CB+(I) → CB+(I), n ∈ N be a sequence of operators satisfying the following
properties:
(i) If f, g ∈ CB+ (I) satisfy f ≤ g then Ln (f) ≤ Ln (g) for all n ∈ N.

(ii) Ln (f + g) ≤ Ln (f) + Ln (g) for f, g ∈ CB+ (I) .
Then for all f, g ∈ CB+ (I) , n ∈ N and x ∈ I we have |Ln (f) (x)− Ln (g) (x)| ≤

Ln (|f − g|) (x).
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Remark 2.2 ([5]). 1) It is easy to see that the nonlinear Favard-Szász-Mirakjan max-
imum product operator satisfy the conditions (i) and (ii) of Lemma 2.1. In fact,
instead of (i) t also satisfies the following stronger condition:

Ln (f ∨ g) (x) = Ln (f) (x) ∨ Ln (g) (x) , f, g ∈ CB+(I).

Indeed, taking into consideration of the equality above, for f ≤ g, f, g ∈ CB+(I), it
easily follows Ln (f) (x) ≤ Ln (g) (x).

2) In addition, it is immediate that the nonlinear Favard-Szász-Mirakjan maximum
product operator is positive homogenous, that is Ln (λf) = λLn (f) for all λ ≥ 0.

After this point, we denote the monomials er(t) := tr, r ∈ N0. The first three
monomials are also known as Korovkin test functions.

Corollary 2.3 ([7]). Let Ln : CB+(I) → CB+(I), n ∈ N be a sequence of operators
satisfying the conditions (i) and (ii) in Lemma 2.1 and in addition being positive
homogenous. Then for all f ∈ CB+(I), n ∈ N and x ∈ I we have

|Ln (f) (x)− f(x)| ≤
[
1

δ
Ln (φx) (x) + Ln (e0) (x)

]
ω (f, δ) + f (x) |Ln (e0) (x)− 1| ,

where ω (f, δ) is the classical modulus of continuity defined by (1), δ > 0, e0 (t) = 1,
φx (t) = |t− x| for all t ∈ I, x ∈ I, and if I is unbounded then we suppose that there
exists Ln (φx) (x) ∈ R+ ∪ {∞} , for any x ∈ I, n ∈ N.

A consequence of Corollary 2.3 is the following:

Corollary 2.4 ([7]). Suppose that in addition to the conditions in Corollary 2.3,
the sequence (Ln)n satisfies Ln (e0) = e0, for all n ∈ N. Then for all f ∈ CB+ (I),
n ∈ N and x ∈ I we have

|Ln (f) (x)− f(x)| ≤
[
1 +

1

δ
Ln (φx) (x)

]
ω (f, δ)

where φx was introduced at Corollary 2.3 and ω (f, δ) is the classical modulus of
continuity defined by (1) and δ > 0.

3. Nonlinear Favard-Szász-Mirakjan operator of maximum product kind

In the classical Favard-Szász-Mirakjan operator, the sum operator
∑

is replaced by
the

∨
maximum operator and introduced by Bede et al. in [7]. The non-linear

Favard-Szász-Mirakjan operator of the maximum product type is thus defined as

F (M)
n (f)(x) =

∞∨
k=0

(nx)k

k! f
(
k
n

)
∞∨
k=0

(nx)k

k!

(2)

where f ∈ C [0,∞) , x ∈ [0,∞) , n ∈ N.
In [5], the approximation and shape preserving properties of F

(M)
n (f)(x) are in-

vestigated.
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Remark 3.1 ([5]). It is clear that F
(M)
n (f) (x) satisfies all conditions in Lemma 2.1,

Corollary 2.3 and Corollary 2.4 for I = [0,∞) .

4. Auxiliary results

From [5], we get F
(M)
n (f)(0) − f (0) = 0 for all n. In this part, we will also consider

x > 0.

For each k, j ∈ {0, 1, 2, . . . , } and x ∈
[
j
n ,

j+1
n

]
, let us define

Mk,n,j (x) :=
sn,k (x)

∣∣ k
n − x

∣∣
sn,j (x)

, mk,n,j (x) :=
sn,k (x)

sn,j (x)

similar to [5]. It is clear that if k ≥ j + 1 then

Mk,n,j (x) =
sn,k (x)

(
k
n − x

)
sn,j (x)

and if k ≤ j − 1 then Mk,n,j (x) =
sn,k (x)

(
x− k

n

)
sn,j (x)

where sn,k (x) =
(nx)k

k! .
Notice that, for all k, j ∈ {0, 1, 2, . . . , }, Mk,n,j (x) and mk,n,j (x) were defined

in [5].
At this point, let us recall the following two lemmas.

Lemma 4.1 ([5]). For all k, j ∈ {0, 1, 2, . . .} and x ∈
[
j
n ,

j+1
n

]
we have mk,n,j(x) ≤ 1.

Lemma 4.2. One has
∞∨
k=0

sn,k (x) = sn,j(x), for all x ∈
[
j

n
,
j + 1

n

]
, ȷ = 0, 1, . . . ,

where sn,k(x) =
(nx)k

k! .

We now give the following lemma, which is proved using a different proof technique
from that given in [2, 5].

Lemma 4.3. Let x ∈
[
j
n ,

j+1
n

]
and α = 2, 3, . . . .

(i) If k ∈ {j + 1, j + 2, . . .} is such that k − (k + 1)1/α ≥ j, then we have

Mk,n,j(x) ≥ Mk+1,n,j(x).

(ii) If k ∈ {1, 2, . . . , j − 1} is such that k + (k)1/α ≤ j, then we get

Mk,n,j(x) ≥ Mk−1,n,j(x).

Proof. (i) From [5, Lemma 3.2, case (i)], we can write

Mk,n,j(x)

Mk+1,n,j(x)
≥ k + 1

j + 1

k − j − 1

k − j
.
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After this point we will use a different proof technique from [5].
By using the induction method, let’s show that the following inequality

k + 1

j + 1

k − j − 1

k − j
≥ 1 (3)

holds for k − (k + 1)1/α ≥ j.

For α = 2, since the condition k − (k + 1)1/2 ≥ j holds, then we have (k − j)
2 ≥

k + 1. So we get (k + 1) (k − j − 1) ≥ (j + 1) (k − j). Therefore we obtain the in-
equality (3) for α = 2.

Now, we assume that (3) is correct for α − 1. Since the inequality (3) holds for
k − (k + 1)1/(α−1) ≥ j, we have(k − j)

α ≥ (k + 1) (k − j).
On the other hand, since k ≥ j+1, we can write (k − j)

α ≥ (k + 1) (k − j) ≥ k+1.
So the desired inequality is provided for k − (k + 1)1/α ≥ j. Thus we obtain,

Mk,n,j(x)

Mk+1,n,j(x)
≥ k + 1

j + 1

k − j − 1

k − j
≥ 1

for α = 2, 3, . . . .
(ii) From [5, Lemma 3.2, case (ii)], we can write

Mk,n,j(x)

Mk−1,n,j(x)
≥ j

k

j − k

j − k + 1
.

After this point we will use our proof technique again.
By using the induction method, let’s show that the following inequality

j

k

j − k

j − k + 1
≥ 1 (4)

holds for k + (k)1/α ≤ j.

For α = 2, because of the condition k + (k)1/2 ≤ j, we get k ≤ (j − k)
2
and

j (j − k) ≥ k (j − k + 1) . Thus we see that (4) is satisfied for α = 2.
Now, we assume that (4) is correct for α − 1. Since the inequality (4) holds for

k + (k)1/(α−1) ≤ j, we havek (j − k) ≤ (j − k)
α
.

On the other hand, since k ≤ j − 1, we can write k ≤ k(j − k) ≤ (j − k)
α
. So the

desired inequality is provided for k + (k)1/α ≤ j. Thus we obtain

Mk,n,j(x)

Mk−1,n,j(x)
≥ j

k

j − k

j − k + 1
≥ 1

for α = 2, 3, . . . which gives the desired result. □

5. Pointwise rate of convergence

Let us take an x0 on the interval [0,∞) . The main goal of this section is to obtain

a better order of the pointwise approximation for the operators F
(M)
n (f)(x0) to the

function f(x0) using the continuity modulus. According to the following theorem, it
can be said that the order of the pointwise approximation can be improved if α is
large enough. Moreover, if α = 2 , these approximation results turn out to be the
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results in [5].

Theorem 5.1. Let f : [0,∞) → R+ is bounded and continuous. Then for any fixed
point x0 on the interval [0,∞) , we have the following order of approximation for the
operators (2) to the function f by means of the modulus of continuity:∣∣∣F (M)

n (f)(x0)− f(x0)
∣∣∣ ≤ (1 + 4x

1
α

0

)
ω

(
f ;

1

n1− 1
α

)
,

for all n ∈ N, x0 ∈ [0,∞) , where ω (f ; δ) is the classical modulus of continuity defined
by (1) and α = 2, 3, . . . .

Proof. Since nonlinear max-product Favard-Szász-Mirakjan operator satisfies the con-
ditions in Corollary 2.4, for any x0 ∈ [0,∞) , using the properties of ω (f ; δ) , we get∣∣∣F (M)

n (f) (x0)− f (x0)
∣∣∣ ≤ [1 + 1

δn
F (M)
n (φx0

) (x0)

]
ω (f, δ) , (5)

where φx0 (t) = |t− x0|. At this point let us denote

En (x0) : = F (M)
n (φx0) (x0) =

∞∨
k=0

(nx0)
k

k!

∣∣ k
n − x0

∣∣
∞∨
k=0

(nx0)k

k!

, x0 ∈ [0,∞) .

Let x0 ∈
[
j
n ,

j+1
n

]
, where j ∈ {0, 1, . . . , } is fixed, arbitrary. By Lemma 4.2 we easily

obtain

En (x0) = max
k=0,1,...,

{Mk,n,j (x0)} , x0 ∈
[
j

n
,
j + 1

n

]
.

Firstly let’s check for j = 0, where x0 ∈
[
0, 1

n

]
and α = 2, 3, . . . .

Since sn,0 (x0) = 1, then we obtain

Mk,n,0 (x0) =
(nx0)

k

k!

∣∣∣∣kn − x0

∣∣∣∣ .
For k = 0, we get M0,n,0 (x0) = x0 = x

1
α
0 x

1− 1
α

0 ≤ x
1
α

0

n1−
1
α

.

Now, for any k ≥ 1, we have

Mk,n,0 (x0) ≤
(nx0)

k

k!

k

n
=

nk−1x
1
α
0 x

k− 1
α

0

(k − 1)!
≤ nk−1x

1
α
0

nk− 1
α (k − 1)!

≤ x
1
α

0

n1− 1
α

.

So, we find an upper estimate for any k = 0, 1, . . . , En (x0) ≤ x
1
α
0

n1− 1
α

when j = 0.

As a result it remains to find an upper estimate for each Mk,n,j (x0) when j =
1, 2, . . ., is fixed, x0 ∈

[
j
n ,

j+1
n

]
, k ∈ {0, 1, . . . , } and α = 2, 3, . . ..

Indeed, we will demonstrate it

Mk,n,j (x0) ≤ 4
x

1
α

0

n1− 1
α

(6)
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for all x0 ∈
[
j
n ,

j+1
n

]
, k = 0, 1, . . . , which directly will implies that

En (x0) ≤ 4
x

1
α

0

n1− 1
α

, for all x0 ∈ [0,∞) , n ∈ N

and taking δn = 1

n1− 1
α

in (5) we have the estimate in the statement immediately.

So, in order to complete the proof of (6), we consider the following cases.

Case 1) If k = j then since x0 ∈
[
j
n ,

j+1
n

]
we get

Mj,n,j (x0) =

∣∣∣∣ jn − x0

∣∣∣∣ ≤ ∣∣∣∣ jn − j + 1

n

∣∣∣∣ = 1

n
.

Now, since j ≥ 1 we have x0 ≥ 1
n , which implies 1

n = 1

n
1
α

1

n1− 1
α

≤ x
1
α
0

n1− 1
α
.

Case 2) Let k ≥ j + 1.

Subcase a) Firstly, let’s assume that k − (k + 1)
1
α < j. From Lemma 4.1 we have

Mk,n,j (x0) = mk,n,j (x0)

(
k

n
− x0

)
≤ k

n
− x0 ≤ k

n
− j

n

≤ k

n
− k − (k + 1)

1
α

n
=

(k + 1)
1
α

n
.

But we certainly have k ≤ 3j. In fact, if we assume that k > 3j, since g′ (x0) =

1 − 1

α(x0+1)1−
1
α

> 0, then the function g (x0) = x0 − (x0 + 1)
1
α is nondecreasing. It

follows that we havej > k− (k + 1)
1
α ≥ 3j − (3j + 1)

1
α . So we getj > 3j − (3j + 1)

1
α

which is also a contradiction.

In conclusion, taking into consideration
(
j
n

) 1
α

≤ x
1
α
0 and j ≥ 1, we get

Mk,n,j (x0) ≤
(k + 1)

1
α

n
≤ (3j + 1)

1
α

n
≤ (4j)

1
α

n

=
(4j)

1
α

n
1
α n1− 1

α

=
4

1
α

n1− 1
α

(
j

n

) 1
α

≤ 4
1
α x

1
α

0

n1− 1
α

.

Subcase b) Assume now that k − (k + 1)
1
α ≥ j. For the function g (x0) := x0 −

(x0 + 1)
1
α , we have g′ (x0) = 1−

(
1/α (x0 + 1)

1− 1
α

)
> 0.

Thus we can say that the function g (x0) is nondecreasing on the interval [0,∞) ,
it follows that there exists a maximum value k̄ ∈ {1, 2, . . . , } satisfying the inequality

k̄ −
(
k̄ + 1

) 1
α < j. Then, for k1 = k̄ + 1, we have k1 − (k1 + 1)

1
α ≥ j and

Mk̄+1,n,j (x0) = mk̄+1,n,j (x0)

(
k̄ + 1

n
− x0

)
≤ k̄ + 1

n
− x0

≤ k̄ + 1

n
− j

n
≤ k̄ + 1

n
−

k̄ −
(
k̄ + 1

) 1
α

n
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=

(
k̄ + 1

) 1
α + 1

n
≤ (3j + 1)

1
α + 1

n
≤ (5j)

1
α

n
≤ 5

1
α

x
1
α
0

n1− 1
α

.

In the above inequality, taking into consideration that k̄ −
(
k̄ + 1

) 1
α < j certainly

implies k̄ ≤ 3j (see the similar reasonings in the previously mentioned subcase (a) ).
Also, we have k1 ≥ j + 1. In fact, this results from the fact that g is nondecreasing,

and since g (j) = j − (j + 1)
1
α < j is obvious. By Lemma 4.3 (i) it follows that

Mk̄+1,n,j (x0) ≥ Mk̄+2,n,j (x0) ≥ . . .. We thereby obtain Mk,n,j (x0) ≤ 5
1
α

x
1
α
0

n1− 1
α

for

any k ∈
{
k̄ + 1, k̄ + 2, . . . ,

}
.

Case 3) Let k ≤ j − 1.

Subcase a) Assume first that k + k
1
α > j. Then we obtain

Mk,n,j (x0) = mk,n,j (x0)

(
x0 −

k

n

)
≤ j + 1

n
− k

n
≤ k + k

1
α + 1

n
− k

n

=
k

1
α + 1

n
≤ (j − 1)

1
α + 1

n
≤ 2 j

1
α

n
1
α n1− 1

α

≤ 2
x

1
α
0

n1− 1
α

taking into consideration that (j − 1)
1
α + 1 ≤ j

1
α + j

1
α and

(
j
n

) 1
α ≤ x

1
α
0 .

Subcase b) Assume now that k + k
1
α ≤ j. Let k̃ ∈ {0, 1, . . . , } be the minimum value

such that k̃ +
(
k̃
) 1

α

> j. Then k2 = k̃ − 1 satisfies k2 + (k2)
1
α ≤ j and

Mk̃−1,n,j (x0) = mk̃−1,n,j (x0)

(
x0 −

k̃ − 1

n

)
≤ j + 1

n
− k̃ − 1

n
≤

k̃ +
(
k̃
) 1

α

+ 1

n
− k̃ − 1

n

=

(
k̃
) 1

α

+ 2

n
≤ (j + 1)

1
α + 2

n
≤ 4

n1− 1
α

(
j

n

) 1
α

≤ 4
x

1
α
0

n1− 1
α

.

For this final inequality, we used the self-evident relationship k̃−1 = k2 ≤ k2+(k2)
1
α ≤

j, which implies k̃ ≤ j + 1 and
(
k̃
) 1

α

+ 2 ≤ (j + 1)
1
α + 2 ≤ 4j

1
α . And, since j ≥ 1, it

is clear that k2 ≤ j − 1.

By Lemma 4.3 (ii) it follows that Mk̃−1,n,j (x0) ≥ Mk̃−2,n,j (x0) ≥ . . . ≥ M0,n,j (x0).

Thus we obtain Mk,n,j (x0) ≤ 4
x

1
α
0

n1− 1
α

for any k ≤ j − 1 and x0 ∈
[
j
n ,

j+1
n

]
.

If we use

max

{
x

1
α

0

n1− 1
α

, 4
1
α x

1
α

0

n1− 1
α

, 2
x

1
α
0

n1− 1
α

, 5
1
α

x
1
α
0

n1− 1
α

, 4
x

1
α
0

n1− 1
α

}
= 4

x
1
α
0

n1− 1
α

,

then we obtain desired result. □
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6. Rate of weighted approximation

We see that the previous results work for a fixed point x0 or finite intervals. However,
if we want to achieve a uniform approximation on infinite intervals, we should use
weighted modules of continuity.

Before giving useful properties of this type of continuity moduli, let us recall the
following spaces and norms (see [12]):

Bρ(R) = {f : R → R| a constant Mf depending on f exists such that |f | ≤ Mfρ} ,
Cρ(R) = {f ∈ Bρ(R)| f continuous on R} ,

endowed with the norm ∥f∥ρ = sup0≤x
|f(x)|
ρ(x) .

To obtain the rate of weighted approximation of positive linear operators defined
on infinite intervals, various weighted modules of continuity are introduced. Some
of them contain the term h in the denominator of the supremum expression. In
chronological order, we refer to some related papers ss [1, 10,11,13,15].

In [13] the authors have introduced the following weighted module of continuity:

Ω(f ; δ) = sup
0≤x,|h|≤δ

|f(x+ h)− f(x)|
(1 + h2)(1 + x2)

. (7)

And in [10] the following weighted modulus of continuity were defined:

ωρ(f ; δ) = sup
0≤x,|h|≤δ

|f(x+ h)− f(x)|
ρ(x+ h)

(8)

where ρ(x) ≥ max(1, x). In the same paper the author has developed a generalization
of the Gadjiev-Ibragimov operators, which includes many well-known operators, and
obtains their weighted convergence rate using ωρ(f ; δ), defined in (8).

In [15], Moreno introduced a different type of modulus of continuity in (8) as
follows

Ωα(f ; δ) = sup
0≤x,|h|≤δ

|f(x+ h)− f(x)|
1 + (x+ h)α

.

It is obvious that by choosing α = 2, in the definition of Ωα(f ; δ), then we get
Ω2(f ; δ) = ωρ0(f ; δ) for ρ0(x) = 1 + x2.

Moreover, let C0
ρ(R) be the subspace of all functions in Cρ(R) such that lim|x|→∞

f(x)
ρ(x)

exists finitely.

In the light of these definitions, we can give the following theorem.

Theorem 6.1. Let f : [0,∞) → R+ be continuous. Then for all x ∈ [0,∞), we have
the following rate of weighted approximation for the operators (2) to the function
f by means of the weighted modulus of continuity defined in (8). Then for each
f ∈ C0

ρ0
(R+), we have∣∣∣F (M)

n (f)(x)− f(x)
∣∣∣

(ρ0(x))2
≤ (1 + 9x2)(1 + 4x

1
α )

(1 + x2)2
ωρ0

(
f ;

1

n1− 1
α

)
, (9)
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for all n ∈ N, where ωρ0(f ; δ) is the weighted modulus of continuity defined by (8),
δ > 0, ρ0(x) = 1 + x2 and α = 2, 3, . . . .

Proof. By using the properties of ωρ0(f ; δ),(see [15] ), we can write∣∣∣F (M)
n (f)(x)−f(x)

∣∣∣≤(1+(2x+F (M)
n (e1) (x))

2
)(1

δ
F (M)
n (φx) (x)+1

)
ωρ0

(f ; δ) (10)

where φx was introduced at Corollary 2.3 and ωρ0(f ; δ) is the weighted modulus of
continuity defined by (8) and δ > 0.

From the proof of Theorem 5.1, we have

En (x) ≤ 4
x

1
α

n1− 1
α

, for all n ∈ N. (11)

On the other hand, after simple calculations, we have

F (M)
n (e1) (x) =

x
∞∨
k=1

xk−1 nk−1

(k−1)!

∞∨
k=0

(nx)k

k!

=

x
∞∨
k=0

xk nk

k!

∞∨
k=0

(nx)k

k!

= x. (12)

So, using the inequalities (11) and (12) in (10) and by choosing δ = 1

n1− 1
α
, the proof

is completed. □

This theorem allows us to express the following weighted approximation result.

Theorem 6.2. Let f : [0,∞) → R+ be continuous. Then for all x ∈ [0,∞), we have
the following rate of weighted approximation for the operators (2) to the function
f by means of the weighted modulus of continuity defined in (8). Then for each
f ∈ C0

ρ0
(R+), we have∥∥∥F (M)

n (f)(x)− f(x)
∥∥∥
ρ2
0(x)

≤ 50 ωρ0

(
f ;

1

n1− 1
α

)
,

for all n ∈ N, where ωρ0
(f ; δ) is the weighted modulus of continuity defined by (8),

δ > 0, ρ0(x) = 1 + x2 and α = 2, 3, . . . .

Proof. By using the inequalities 1
1+x2 ≤ 1, x2

1+x2 ≤ 1 and x
1
α

1+x2 ≤ 1, we have

(1 + 9x2)(1 + 4x
1
α )

(1 + x2)2
≤ 50. (13)

If we use (13) in (9), we obtain desired result. □

Remark 6.3. Theorem 5.1, Theorem 6.1 and Theorem 6.2 thus show that the orders
of the pointwise approximation, the weighted approximation andthe weighted uniform
approximation are 1/n1− 1

α . For sufficiently large α , 1/n1− 1
α inclines to 1/n. As a

result, since 1 − 1
α ≥ 1

2 for α = 2, 3, . . . , this choice of α improves the order of
approximation. Thus, these results, including the classical and weighted modulus, of
continuities show that a better order of approximation can be obtained.

Acknowledgement. This paper is dedicated to Professor Abdullah Altın on the
occasion of his 75th birthday, with high esteem.



48 The nonlinear Favard-Szász-Mirakjan operator

References

[1] N. T. Amanov, On the weighted approximation by Szász-Mirakjan operators, Anal. Math., 18
(1992), 167–184.

[2] B. Bede, L. Coroianu, S. G. Gal, Approximation and shape preserving properties of the Bern-
stein operator of max-product kind, Hindawi Publ. Corp. Int. J. of Math. and Math. Sci.,
Article ID 590589 (2009), 26 pages, doi:10.1155/2009/590589.

[3] B. Bede, L. Coroianu, S. G. Gal, Approximation and shape preserving properties of the non-
linear Baskakov operator of max-product kind, Studia Univ. Babeş-Bolyai (Cluj), Ser. Math.,
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