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A COUNTEREXAMPLE FOR ONE VARIANT

OF MCINTOSH CLOSED GRAPH THEOREM

Lj. �Cuki�c

Abstract. Counterexamples for two closed graph theorems from K�othe's monograph [5] are
given.

In K�othe's monograph [5] the following two theorems ([5] x35.10.(1) and (2))
are "proved":

(1) Let E(t) be a sequentially complete locally convex space, t the Mackey
topology, and let E0(�(E0; E)) be complete. Let F be a semi-reexive webbed space.
Then every sequentially closed linear mapping A from E in F is continuous.

(2) Let E and F be (F)-spaces and A a weakly sequentially closed linear map-
ping from E0 into F 0. Then A is weakly continuous.

The �rst of these theorems is a generalization of McIntosh closed graph theo-
rem.

We shall prove here that both these theorems are incorrect, even if A is a
sequentially continuous linear functional.

Both theorems are correct if we assume that the linear mapping A has a closed
graph ([2]).

The notations we use here for weak and strong topology are as in [6]. Let us
remark that in [5] by a sequentailly closed mapping it is assumed a mapping with
a sequentially closed graph and by a weak continuity of a mapping A : E0 ! F 0 it
is assumed its �(E0; E)-�(F 0; F ) continuity.

Example 1. Let T be a P -space which is not realcomplete (see [3], 9.L. or [1],
Example 2.6-1), E = Cb(T ) space of all bounded continuous real-valued functions
on T and t the strongest of all locally convex topologies on E which coincide with
compact-open topology on the set fx 2 E : sup

T
jx(s)j � 1 g (i.e. t is the strict

topology [7]). Then the locally convex space E(t) satis�es all conditions from (1)
([7], Theorems 2.1. and 2.2.). Let p 2 fT � T , where fT is the realcompletion of
the space T , and Ax = �x(p), where �x is the (unique) continuous extension of x 2 E

on fT .
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The linear functional A is sequentially continuous on E(t), but it is not con-
tinuous. In fact, if xn ! x in E(t), then xn ! x pointwise on T . Then also
�xn(p) ! �x(p), because there exists s 2 T so that �x(p) = x(s) and �xn(p) = xn(s)
for all n (see [8], 2.5.(c)) and so A is sequentially continuous. The mapping A is
not continuous because p 2 fT � T ([8], 2.4.(a)).

Example 2. Let T be any in�nite compact extremally disconnected space (for
example, the Stone-�Cech compacti�cation of discrete space N of positive integers)
and let E be the space of all continuous real-valued functions on T , with supremum
norm. Then E is a Banach space and E 6= E00 ([1], 2.8-2). If A 2 E00 n E, then A

is not a �(E0; E)-continuous linear functional on E0, but it is �(E0; E)-sequentially
continuous.

In fact, if a sequence (xn) fromE0 �(E0; E)-converges to zero, then it �(E0; E00)-
converges to zero ([4], Theorem 9), and so the sequence (Axn) converges to zero.
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