SOME THEOREMS ON COMMON FIXED POINTS

Ljubomir Ćirić, Nikola Jotić

Abstract. Three general theorems on common fixed points of non-commuting selfmaps of a metric space are given. These results generalize the recent results of Naidu and Prasad [7], Leader [5] and a number of earlier results.

1. Introduction

S.V.R. Naidu and J.R. Prasad, in [7], obtained a number of results on common fixed points for a pair of selfmaps of a metric space, where the maps satisfied a variety of generalised contraction definitions governed by a control function. The purpose of this note is to show that their contractive conditions seem to be still restricted.

2. Results

Let (X, d) be a metric space. For a subset A of X, denote diam $(A) = \sup\{d(x, y) : x, y \in A\}$. For any selfmap h of X and $x_0 \in X$, the set $O_h(x_0) = \{h^n x_0 : n \ge 0\}$ is called the h-orbit of x_0 . For any pair of selfmaps f and g of X and any $x, y \in X$, denote

$$\alpha(x,y) = \operatorname{diam}\{O_f(x) \cup O_g(y)\}; \quad \beta(x,y) = \sup\{d(f^i x, g^j y) : i \ge 0, j \ge 0\}.$$

DEFINITION. We will say that a real-valued function $F: X \to [0, \infty)$ is *h*-orbitally weaker lower semicontinuous (w.l.s.c.) relative to x_0 , if $\{x_n\}$ is a sequence in $O_h(x_0)$ and $x_n \to x^*$ implies that $F(x^*) \leq \limsup F(x_n)$.

The following result is main.

THEOREM 2.1. Let X be a metric space, f and g a pair of selfmaps of X, and $x_0 \in X$ with diam $[O_f(x_0)] < \infty$ or diam $[O_g(x_0)] < \infty$. Suppose that

(A) for any $\varepsilon > 0$ there exists a $\delta = \delta(\varepsilon) > 0$ such that

$$\varepsilon \leqslant \alpha(x,y) < \varepsilon + \delta \quad implies \quad \inf_{n \geqslant 0} \beta(f^n x, g^n y) < \varepsilon$$

AMS (MOS) Subject Classification (1980): Primary 54H25

for all $x \in O_f(x_0)$ and $y \in O_g(x_0)$. Suppose also that $\{d(f^n x_0, g^n x_0)\}$ converges to zero. Then

(a) $\{f^n x_0\}$ and $\{g^n x_0\}$ are Cauchy sequences, and if one of them converges then the other also converges to the same limit. Furthermore, if either f or g has a fixed point u, then the two sequences converge to u.

(b) If one of the two sequences $\{f^n x_0\}$ and $\{g^n x_0\}$ convergees to some x^* in X, then x^* is a fixed point of f (resp. g) if a function $F_1(x) = d(x, fx)$ or $F_2(x) = d(x, f^2x)$, [resp. $G_1(x) = d(x, gx)$ or $G_2(x) = d(x, g^2x)$] is f-orbitally (resp. g-orbitally) w.l.s.c. relative to x_0 .

(c) If $F_2(x)$ [or $F_1(x)$] and $G_2(x)$ [or $G_1(x)$] are orbitally w.l.s.c. relative to x_0 , then x^* is a common fixed point of f and g.

Proof. Put $\alpha_n = \alpha(f^n x_0, g^n x_0)$, $\beta_n = \beta(f^n x_0, g^n x_0)$. Since $\{d(f^n x_0, g^n x_0)\}$ converges to zero and one of sequences $\{f^n x_0\}$, $\{g^n x_0\}$ is bounded, it follows that $\alpha_0 = \alpha(x_0, x_0) < \infty$. It is clear that $\alpha_{n+1} \leq \alpha_n$ and $\beta_{n+1} \leq \beta_n$. Hence $\lim \alpha_n = \varepsilon$ and $\lim \beta_n = \beta$ exist.

We shall show that $\varepsilon = 0$. Suppose to the contrary that $\varepsilon > 0$. Then $\delta = \delta(\varepsilon) > 0$ and so there exists a positive integer k such that $\varepsilon \leq \alpha_k < \varepsilon + \delta$. From (A) with $x = f^k x_0$ and $y = g^k x_0$ we have $\inf_{n \geq k} \beta_n = \beta < \varepsilon$, thus $(\varepsilon - \beta)/2 > 0$ and so there exists an integer $r \geq k$ such that

$$\beta_r < \beta + (\varepsilon - \beta)/2. \tag{1}$$

Since $\{d(f^n x_0, g^n x_0)\}$ converges to zero, there exists an integer $s \ge r$ such that $d(f^n x_0, g^n x_0) < (\varepsilon - \beta)/2$ for every $r \ge s$. Let now $i \ge j \ge s$. Then by the triangle inequality and (1) we have:

$$\begin{aligned} &d(f^{i}x_{0}, f^{j}x_{0}) \leqslant d(f^{i}x_{0}, g^{j}x_{0}) + d(f^{j}x_{0}, g^{j}x_{0}), \\ &d(f^{i}x_{0}, f^{j}x_{0}) \leqslant \beta_{s} \leqslant \beta_{r}, \\ &d(f^{i}x_{0}, f^{j}x_{0}) \leqslant d(f^{i}x_{0}, g^{j}x_{0}) + d(f^{j}x_{0}, g^{j}x_{0}) \leqslant \beta_{r} + (\varepsilon - \beta)/2, \\ &d(g^{i}x_{0}, g^{j}x_{0}) \leqslant d(f^{j}x_{0}, g^{i}x_{0}) + d(f^{j}x_{0}, g^{j}x_{0}) \leqslant \beta_{r} + (\varepsilon - \beta)/2. \end{aligned}$$

Hence we get

$$\alpha_{k_2} \leqslant \beta_{k_2} + (\varepsilon - \beta)/2 < (\beta + \varepsilon)/2 + (\varepsilon - \beta)/2 = \varepsilon.$$

This is a contradiction, since $\alpha_n \ge \varepsilon$ for all $n \ge 0$. Therefore, $\lim \alpha_n = 0$. Hence we conclude that $\{f^n x_0\}$ and $\{g^n x_0\}$ are Cauchy sequences, and if one of them converges, then both sequences converge to the same limit.

Suppose now that gu = u. Denote

$$a_n = \alpha(f^n x_0, g^n u) = \alpha(f^n x_0, u); \quad b_n = \beta(f^n x_0, u); \quad D_n = \delta[O_f(f x_0^n)].$$

Then $a_n = \max\{b_n, D_n\}$. Since $\{f^n x_0\}$ is a Cauchy sequence, we have $\lim D_n = 0$. Let $a = \lim a_n$ and $b = \lim b_n$. If we suppose that a > 0, then by (A) we have b < 0 $a \leq a_n = \max\{b_n, D_n\}$. Taking the limit as $n \to \infty$ yields b < b, a contradiction. Therefore, $\lim \alpha(f^n x_0, u) = 0$. Hence, $\lim f^n x_0 = u$.

Similarly, if fz = z for some $z \in X$, then it can be shown that $\{g^n x_0\}$ converges to z. The statement (a) is proved.

Suppose now that $\lim f^n x_0 = x^*$ and that a real-valued function $F_2(x) = d(x, f^2 x)$ is *f*-orbitally w.l.s.c. relative to x_0 . Then

$$F(f^n x_0) = d(f^n x_0, f^{n+2} x_0) \to 0, \text{ as } n \to \infty,$$

which implies $F(x^*) = 0$. Hence $f^2x^* = x^*$. Therefore, $O_f(x^*) = \{x^*, fx^*\}$. Since by (a) $\{g^n x_0\}$ also converges to x^* , it follows that diam $[O_g(g^k x_0)] = D_k \to 0$, as $k \to \infty$. Suppose that $d^* = d(x^*, fx^*) > 0$. Since

$$\inf_{n \geqslant 0} \beta[f^n x^*, g^n(g^k x_0)] = d^*; \quad \lim_{k \to \infty} \alpha(x^*, g^k x_0) = d^*,$$

from inequality (A) we obtain $d^* < d^*$, a contradiction. Hence $d^* = d(x^*, fx^*) = 0$, i.e. x^* is a fixed point for f.

Note that if $F_1(x) = d(x, fx)$ is *f*-orbitally w.l.s.c., then it is easy to see that $d(x^*, fx^*) = 0$. Hence $fx^* = x^*$.

Similarly, g-orbitally weakly lower semi-continuity of $G_1(x) = d(x, gx)$, $G_2(x) = d(x, g^2x)$ implies $gx^* = x^*$. So we have showed (b). Note that (c) is clear.

COROLLARY 1. Theorem 1 holds if the condition (A) is replaced by the following condition:

 $(B) \inf_{1 \leqslant n < \infty} \beta(f^n x, g^n y) \leqslant \varphi[\alpha(x, y)]$

for all x, y in X, where $\varphi \colon [0,\infty) \to [0,\infty)$ is an increasing function with the property that $\varphi(t+) < t$ for every t > 0.

Proof. It is well known that the conditions of the type (B) imply the conditions of the type (A) (see [6] and [4]). \blacksquare

REMARK 1. Corollary 1 is a slightly generalization of Theorem 1 of Naidu and Prasad [7], since they suppose in b) that f or f^2 (resp. g or g^2) is orbitally continuous at x^* .

REMARK 2. In Corollary 1 (and Theorem 1) one cannot drop the condition: a sequence $\{d(f^n x_0, g^n x_0)\}$ converges to zero. Examples 5 and 6 in [8] and Example 4 in [7] show it.

THEOREM 2. Let X be a metric space, $f, g: X \to X$ selfmaps of X and $x_0 \in X$ with diam $[O_f(x_0) \cup O_q(x_0)] < \infty$. Suppose that

(C) for any $\varepsilon > 0$ there exists a $\delta > 0$ such that for each $x \in O_f(x_0)$ and $y \in O_g(x_0)$

$$\varepsilon \leqslant \alpha(x,y) < \varepsilon + \delta \quad imp\, lies \quad \inf_{n \geqslant 0} \alpha(f^n x, g^n y) < \varepsilon$$

Then conclusions of Theorem 1 follow. Furthermore, the assumptions of continuity in (b) and (c) of Theorem 1 can be relaxed as follows: there exists a positive integer k (resp. m) such that the function $P(x) = d(x, f^k x)$ [resp. $Q(x) = d(x, g^m x)$] is f-orbitally (resp. g-orbitally) w.l.s.c. relative to x_0 .

The proof of Theorem 2 is omitted, since it follows the same arguments as those of Theorem 1.

COROLLARY 2. Theorem 2 holds if the condition (C) is replaced by the following condition:

 $(D) \inf_{1\leqslant n<\infty} \alpha(f^nx,g^ny)\leqslant \varphi[\alpha(x,y)]$

for all $x, y \in X$, where φ is as in Corollary 1. Furthermore, each of f and g has at most one fixed point.

REMARK 3. Corollary 2 is a slightly generalization of Theorem 2 of Naidu and Prasad [7] like Remark 1. The second part of Theorem 6 of Ding [2] also follows from Theorem 2.

REMARK 4. If in Theorem 2 the condition (C) holds for all x, y in X and f = g, then we derive the main fixed point theorem of Leader [5] as a corollary.

THEOREM 3. Theorem 2 holds with the contractive condition (E) below in the place of condition (B):

(E) for any $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\varepsilon \leqslant \beta(x,y) < \varepsilon + \delta \quad implies \quad \inf_{n \geqslant 0} \beta(f^n x_0, g^n x_0) < \varepsilon$$

for each $x \in O_f(x_0)$ and $y \in O_q(x_0)$.

The proof of Theorem 3 parallels that of Theorem 1.

COROLLARY 3. Theorem 3 holds if the condition (E) is replaced by the following condition:

$$(F) \inf_{1\leqslant n<\infty}\beta(f^nx,g^ny)\leqslant \varphi[\beta(x,y)]$$

for all x, y in X, where φ is as in Corollary 1. Furthermore, each of f and g has at most one fixed point.

REMARK 5. Corollary 3 is a slightly modification of theorem 3 of Naidu and Prasad [7] like Remark 1.

REMARK 6. Corollaries 1, 3, 4 and 5 of Naidu and Prasad [7] follow from our corresponding Theorems 1, 2 or 3.

REFERENCES

- Lj. Ćirić, A note on fixed point mappings with contracting orbital diameters, Publ. Inst. Math. (Beograd) (N.S.) 27 (41), 1980, 31-32
- [2] X. P. Ding, Some results on fixed points, Chin. Ann. Math. 4B(4), 1983, 413-423
- [3] B. Fisher, Results on common fixed points on complete metric space, Glasgow Math. J. 21, 1980, 165-167
- [4] M. Hegedüs and T. Szilàgyi, Equivalent and a new fixed point theorem in the theory of contractive mappings, Math. Japonica 25, 1980, 147-157
- [5] S. Leader, Two convergence principles with applications to fixed points in metric spaces, Nonlinear Anal., Theory Methods Appl. 6, 1982, 531-538
- [6] A. Meir and E. Keeler, A theorem on contractive mappings, J. Math. Anal. Appl. 28, 1969, 326-329
- [7] S. V. R. Naidu and J. R. Prasad, Fixed point theorems for pairs of selfmaps on a metric space, Publ. Inst. Math. (Beograd) (N.S.) 44 (58), 1988, 65-75
- [8] K. P. R. Sastry and S. V. R. Naidu, Fixed point theorems for generalized contraction mappings, Yokohama Math. J. 28, 1980, 15-29

(received 19.02.1993.)

Mašinski fakultet, Beograd, 27. marta 80