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INCREASING SOLUTIONS OF (r(x)y(n))(n) = yf(x)

Julka Kne�zevi�c-Miljanovi�c

Abstract. We study the existence of positive, monotonic, unbounded solutions of the
equation (r(x)y(n))(n) = yf(x). We obtain necessary and su�cient conditions for the existence of
di�erent classes of these solutions.

Previous investigations of the equation

(r(x)y(n))(n) = �yf(x; y) (1:� 1)

include that of Kusano and Naito [1], who studied (1:� 1) with n = 2, and Kreith
[2], who studied (1:� 1) with r(x) = 1. We consider the equation

(r(x)y(n))(n) = yf(x) (2)

where f(x) and r(x) are positive and continuous on [�;1) and
R
1

�
du=r(u) =1.

Definition. Denote Ek(x; y) = y(k), 0 6 k 6 n�1, Ek(x; y) = (r(x)y(n))(k�n)

for n 6 k 6 2n, and Ek(x) = Ek(x; y(x)). A solution y(x) of the equation (2) is
said to be of the type 2j, 0 6 j 6 n if Ek(x) > 0, 0 6 k 6 2j and (�1)kEk(x) > 0,
for 2j 6 k 6 2n and � 6 x <1 for some � > � . Denote also

Rk(x; t) =

8>><
>>:

(t� x)k

k!
; for 0 6 k 6 n� 1,

Z t

x

(u� x)n�1(t� u)k�n

(n� 1)! (k � n)! r(u)
du; for n 6 k 6 2n� 1,

� 6 t; x <1:

We observe that Rk(x; t) > 0 for � 6 t < s <1, and (�1)kRk(x; t) > 0 for x > t.

The following facts are known:

1) A solution of (2) which is positive on [�;1) must be of the type 2j for some
j, 0 6 j 6 n.

2) Equation (2) has solutions of the type 2j for j = 0 and j = n [3].

Unlike earlier work on this subject, which considered solutions satisfying the
asymptotic condition 0 < limx!1 y(x)R�1m (x) < 1, we impose a stronger asymp-
totic condition

lim
x!1

����y(x)�
mX
k=0

AkRk(x)

���� = 0:
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Theorem. y(x) is a solution of the type 2j, 0 < j < n, of (2) if and only if
E2j(x) # A2j > 0 as x ! 1. In this case there exist positive constants �, � such
that

�R2j�1(�; x) < y(x) < �R2j(�; �); � 6 x <1;

� su�ciently large. Further, y(x) � R2j(�; x) if and only if A2j > 0; y(x) �
R2j�1(�; x) if and only if A2j = 0 and E2j�1(x) " A2j�1 > 0, x!1.

Proof. That E2j # A2j > 0 follows from the de�nition of the solutions of type
2j, since E2j is a positive decreasing function. It follows that for su�ciently large
t, 0 6 A2j 6 E2j(x) < A2j + ". If 2j 6 n� 1, we can integrate these inequalities
2j times and obtain positive constants �, � such that

�R2j�1(�; x) < y(x) < �R2j(�; x)

for su�ciently large t. If 2j > n, we integrate 2j � n times obtaining
�1R2j�n�1(�; x) 6 r(x)y(n)(x) 6 �1R2j�n(�; x), then dividing by r(x) and inte-
grating n times we obtain

�R2j�1(�; x) < y(x) < �R2j(�1; x):

If A2j is strictly positive, then the preceding argument in fact gives �R2j(�; x) <
y(x) < �R2j(�; x) and y(x) is in fact asymptotically equivalent to R2j . If A2j = 0
then E2j�1 is bounded and increasing shows that y(x) is asymptotically equivalent
to R2j�1(�1; x).

We note that a solution of (2) can be written as

y(x) = E0(x) =

2n�1X
k=0

(�1)kEk(b)Rk(x; b) +

Z b

x

R2n�1(x; t)p(t)x(t) dt: (3)

Formula (3) follows from the Taylor's theorem:

y(x) =

n�1X
k=0

(�1)k(b� x)ky(k)(b)

k!
+ (�1)k

Z b

t

(t� x)n�1r(t)y(n)(t)

(n� 1)! r(t)
dt (a)

r(t)y(n)(t) =

n�1X
k=0

(�1)k(b� t)k(r(b)y(n)(b))(k)

k!
+ (�1)n

Z b

x

(t� n)n�1p(u)y(u)

(n� 1)!
du;
(b)

if we substitute (b) into (a) and interchange the order of integration, (3) results.
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