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THE COMPATIBILITY OF THE TANGENCY RELATIONS

OF SETS IN GENERALIZED METRIC SPACES

Tadeusz Konik

Abstract. In this paper the problem of the compatibility of the tangency relations
Tli(ai; bi; k; p) (i = 1; 2) of sets of the classes ~Mp;k and A�

p;k in a generalized metric space is
considered. Some su�cient conditions for the compatibility of these relations of sets of the above
classes are given here.

Introduction

Let E be an arbitrary non-empty set and let l be a non-negative real function
de�ned on the Cartesian product E0�E0 of the family E0 of all non-empty subsets
of the set E. Let l0 be the function de�ned by the formula

l0(x; y) = l(fxg; fyg) for x; y 2 E: (1)

If we put some conditions on the function l, then the function l0 de�ned by (1) will
be a metric on the set E. By this reason the pair (E; l) can be treated as a certain
generalization of a metric space and we shall call it (see [9]) a generalized metric
space. Using (1) we may de�ne in the space (E; l), similarly as in a metric space,
the following notions: the sphere Sl(p; r) and the ball Kl(p; r) with the centre at
the point p and the radius r.

Let Sl(p; r)u denote the so-called u-neighbourhood of the sphere Sl(p; r) in the
space (E; l) de�ned by the formula

Sl(p; r)u =

� S
q2Sl(p;r)

Kl(q; u); for u > 0,

Sl(p; r); for u = 0.
(2)

Let a, b be arbitrary non-negative real functions de�ned in a certain right-hand
side neighbourhood of 0 such that

a(r) ����!
r!0+

0 and b(r) ����!
r!0+

0: (3)

We say that the pair (A;B) of sets A, B of the family E0 is (a; b)-clustered at the
point p of the space (E; l), if 0 is the cluster point of the set of all real numbers r > 0
such that the sets of the form A \ Sl(p; r)a(r) and B \ Sl(p; r)b(r) are non-empty.
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Let (see [9])

Tl(a; b; k; p) =
�
(A;B) : A;B 2 E0; the pair (A;B) is (a; b)-clustered at the

point p of the space (E; l) and
1

rk
l(A \ Sl(p; r)a(r); B \ Sl(p; r)b(r)) ����!

r!0+
0
	
:

(4)

If (A;B) 2 Tl(a; b; k; p) then we say that the set A 2 E0 is (a; b)-tangent of order k
(k > 0) to the set B 2 E0 at the point p of the space (E; l).

We shall call Tl(a; b; k; p) de�ned by (4) the relation of (a; b)-tangency of order
k at the point p, or shortly: the tangency relation of sets in the generalized metric
space (E; l).

Two relations of the tangency Tl1(a1; b1; k; p) and Tl2(a2; b2; k; p) are called
compatible if (A;B) 2 Tl1(a1; b1; k; p) if and only if (A;B) 2 Tl2(a2; b2; k; p) for
A;B 2 E0.

We say that the set A 2 E0 has the Darboux property at the point p of the
space (E; l), which we write: A 2 Dp(E; l) (see [3]), if there exists a number � > 0
such that the set A \ Sl(p; r) is non-empty for r 2 (0; �).

Let � be a metric on the set E and let A, B be arbitrary sets of the family E0.
Let us denote

�(A;B) = inff �(x; y) : x 2 A; y 2 B g; d�A = supf �(x; y) : x; y 2 A g: (5)

Let f be a subadditive increasing real function de�ned in a certain right-hand side
neighbourhood of 0 such that f(0) = 0. By F f we shall denote the class of all
functions l ful�lling the conditions:

1� l : E0 �E0 ! h0;1),

2� f(�(A;B)) 6 l(A;B) 6 f(d�(A [B)) for A;B 2 E0.

Since

f(�(x; y)) = f(�(fxg; fyg)) 6 l(fxg; fyg) 6 f(d�(fxg [ fyg)) = f(�(x; y));

then from here and from (1) it follows that

l0(x; y) = l(fxg; fyg) = f(�(x; y)) for l 2 F f and x; y 2 E. (6)

It is easy to prove that the function l0 de�ned by (6) is a metric on the set E.

In the present paper the problem of the compatibility of the tangency relations
of sets of the classes ~Mp;k and A�p;k having the Darboux property at the point p of

the space (E; l), for the functions l belonging to the class F f , is considered.

1. On the compatibility of the tangency relations of sets

of the classes ~Mp;k

By A0 we shall denote the set of all cluster points of the set A 2 E0. Let k be
any �xed positive real number and let

�(x;A) = inff �(x; y) : y 2 A g: (1.1)
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Let us put by de�nition (see [4])

~Mp;k =
�
A 2 E0 : p 2 A0 and there exists � > 0 scuh that for an arbitrary " > 0

there exists � > 0 such that for every pair of points (x; y) 2 [A; p;�; k]

if �(x; y) < � and
�(x;A)

�k(x; p)
< � then

�(x; y)

�k(x; p)
< "

	
; (1.2)

where

[A; p;�; k] = f (x; y) : x 2 E; y 2 A and ��(x;A) < �k(x; p) = �k(y; p) g (1.3)

In the paper [4] the following lemma was proved.

Lemma 1.1. If
a(r)

rk+1
����!
r!0+

�; (1.4)

where � <1, then for an arbitrary set A 2 ~Mp;k \Dp(E; �)

1

rk
d�(A \ S�(p; r)a(r)) ����!

r!0+
0: (1.5)

From this lemma and from the fact that every function l 2 F f generates on
the set E the metric de�ned by the formula (6) it follows that

1

rk
dl(A \ Sl(p; r)a(r)) ����!

r!0+
0; (1.6)

for l 2 F f and A 2 ~Mp;k \Dp(E; l), when the function a ful�lls the condition (1.4).

Theorem 1.1. If li 2 F f (i = 1; 2),

a(r)

rk+1
����!
r!0+

� and
b(r)

rk+1
����!
r!0+

�; (1.7)

where �; � <1, then for arbitrary sets of the classes ~Mp;k \Dp(E; l) the tangency
relations Tl1(a; b; k; p) and Tl2(a; b; k; p) are compatible.

Proof. Let us assume that (A;B) 2 Tl1(a; b; k; p) for A;B 2 ~Mp;k. Hence, from
(2) and from the fact that (see (6))

l1(fxg; fyg) = l2(fxg; fyg) = l0(x; y) for x; y 2 E; (1.8)

it follows that the pair of sets (A;B) is (a; b)-clustered at the point p of the space
(E; l1) and

1

rk
l1(A \ Sl(p; r)a(r); B \ Sl(p; r)b(r)) ����!

r!0+
0: (1.9)

From the inequality

d�(A [ B) 6 d�A+ d�B + �(A;B) for A;B 2 E0; (1.10)
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from the properties of the function f and from the fact that l1, l2 2 F f we get���� 1rk l2(A \ Sl(p; r)a(r); B \ Sl(p; r)b(r))�
1

rk
l1(A \ Sl(p; r)a(r); B \ Sl(p; r)b(r))

���� 6
1

rk
f(d�((A\Sl(p; r)a(r))[(B\Sl(p; r)b(r))))�

1

rk
f(�(A\Sl(p; r)a(r); B\Sl(p; r)b(r)))

6
1

rk
f(d�(A\Sl(p; r)a(r))+d�(B\Sl(p; r)b(r))+�(A\Sl(p; r)a(r); B\Sl(p; r)b(r)))�

�
1

rk
f(�(A \ Sl(p; r)a(r); B \ Sl(p; r)b(r)))

6
1

rk
f(d�(A \ Sl(p; r)a(r))) +

1

rk
f(d�(B \ Sl(p; r)b(r))): (1.11)

From the fact that f is an increasing function we obtain

f(d�(A \ Sl(p; r)a(r))) = f(supf �(x; y) : x; y 2 (A \ Sl(p; r)a(r)) g)

= supf f(�(x; y)) : x; y 2 (A \ Sl(p; r)a(r)) g

= supf l0(x; y) : x; y 2 (A \ Sl(p; r)a(r)) g = dl(A \ Sl(p; r)a(r)): (1.12)

Hence and from (1.6) it follows that

1

rk
f(d�(A \ Sl(p; r)a(r))) ����!

r!0+
0: (1.13)

Analogously
1

rk
f(d�(B \ Sl(p; r)b(r))) ����!

r!0+
0: (1.14)

From (1.9), (1.13), (1.14) and from the inequality (1.11) we get

1

rk
l2(A \ Sl(p; r)a(r); B \ Sl(p; r)b(r)) ����!

r!0+
0: (1.15)

Since the functions l1; l2 2 F f generate on the set E the same metric l0 (see
(6)), from the fact that the pair of sets (A;B) is (a; b)-clustered at the point p of
the space (E; l1), it follows that it is (a; b)-clustered at the point p of the space
(E; l2). Hence and from (1.15) it results that (A;B) 2 Tl2(a; b; k; p).

If (A;B) 2 Tl2(a; b; k; p), then similarly we prove that (A;B) 2 Tl1(a; b; k; p).
Hence it follows that the tangency relations Tl1(a; b; k; p) and Tl2(a; b; k; p) are com-

patible in the classes of sets ~Mp;k \Dp(E; l).

Let ai, bi (i = 1; 2) be non-negative real functions de�ned in a certain right-
hand side neighbourhood of 0 and ful�lling the condition

ai(r) ����!
r!0+

0 and bi(r) ����!
r!0+

0: (1.16)

In the paper [7] the following theorem was proved.

Theorem 1.2. If l 2 F f and

ai(r)

rk+1
����!
r!0+

�i;
bi(r)

rk+1
����!
r!0+

�i; (1.17)
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where �i; �i <1 for i = 1; 2, then for arbitrary sets of the classes ~Mp;k \Dp(E; l)
the tangency relations Tl(a1; b1; k; p) and Tl(a2; b2; k; p) are compatible.

From the Theorems 1.1 and 1.2 it follows

Corollary 1.1. If li 2 F f and the functions ai, bi (i = 1; 2) ful�l the
condition (1:17), then the tangency relations Tl1(a1; b1; k; p) and Tl2(a2; b2; k; p) are

compatible in the classes of sets ~Mp;k \Dp(E; l).

2. On the compatibility of the tangency relations of sets

of the classes A�

p;k

Let (E; �) be a metric space. Let us put by de�nition (see [3])

A�p;k =
�
A 2 E0 : p 2 A0 and there exists a number � > 0 such that

lim sup
[A;p;k]3(x;y)!(p;p)

�(x; y)� ��(x;A)

�k(x; p)
6 0

	
; (2.1)

where

[A; p; k] = f (x; y) : x 2 E; y 2 A and �(x;A) < �k(x; p) = �k(y; p) g: (2.2)

In the paper [4] it was proved that A�p;k �
~Mp;k for any k > 0 and p 2 E.

With this connection the Theorems 1.1, 1.2 mentioned in Section 1 of this paper
are ful�lled in the classes of sets A�p;k \ Dp(E; l). It appears that these theorems

will be true for sets of the classes A�p;k \ Dp(E; l) at slightly weaker conditions

concerning the functions a, b, ai, bi (i = 1; 2) appearing in the assumptions of the
above theorems.

In the paper [3] the following lemma was proved:

Lemma 2.1. If
a(r)

rk
����!
r!0+

0; (2.3)

then for an arbitrary set A 2 A�p;k \Dp(E; �)

1

rk
d�(A \ S�(p; r)a(r)) ����!

r!0+
0: (2.4)

From this lemma and from (6) it follows that

1

rk
dl(A \ Sl(p; r)a(r)) ����!

r!0+
0; (2.5)

for l 2 F f and A 2 A�p;k \Dp(E; l), when the function a ful�ls the condition (2.3).

Similarly as in the case of the classes of sets ~Mp;k, using (2.5) we can prove
the following theorem.

Theorem 2.1. If li 2 F f (i = 1; 2),

a(r)

rk
����!
r!0+

0; and
b(r)

rk
����!
r!0+

0; (2.6)
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then for arbitrary sets of the classes A�p;k \ Dp(E; l) the tangency relations

Tl1(a; b; k; p) and Tl2(a; b; k; p) are compatible.

Let ai, bi (i = 1; 2) be non-negative real functions de�ned in a certain right-
hand side neighbourhood of 0 and ful�lling the condition (1.16). In the paper [8]
the following theorem was proved.

Theorem 2.2 If l 2 F f and

ai(r)

rk
����!
r!0+

0 and
bi(r)

rk
����!
r!0+

0 for i = 1; 2; (2.7)

then for arbitrary sets of the classes A�p;k \ Dp(E; l) the tangency relations

Tl(a1; b1; k; p) and Tl(a2; b2; k; p) are compatible.

From the Theorems 2.1 and 2.2 the following corollary results.

Corollary 2.1. If the functions ai, bi (i = 1; 2) ful�l the condition (2:7)
and li 2 F f , then the tangency relations Tl1(a1; b1; k; p) and Tl2(a2; b2; k; p) are
compatible in the classes of sets A�p;k \Dp(E; l).

Let id denotes the identity function de�ned in a right-hand side neighbourhood
of 0. If we put f = id, then the class F id of the function l is equal to the class
F �

� (see [3], [4]). From here it results that all theorems about the problem of the
compatibility of the tangency relations of sets for the functions of the class F �

� given
in the papers [3] and [4] follow from the theorems of this paper.
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