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CONTINUITY OF THE ESSENTIAL SPECTRUM

IN THE CLASS OF QUASIHYPONORMAL OPERATORS

Slavi�sa V. -Dor -devi�c

Abstract. Let H be a separable Hilbert space. We write �(A) for the spectrum of A 2
B(H), �w(A) for the Weyl spectrum and �b(A) for the Browder spectrum. Operator A 2 B(H)
is quasihyponormal if A�(A�A� AA�)A � 0, i.e. kA�Axk � kA2xk, for every x 2 H.

1. Introduction

Let H be a complex in�nite-dimensional separable Hilbert space and let B(H)
(K(H)) denote a Banach algebra of all bounded operators (the ideal of all compact
operators) on H . If A 2 B(H), then �(A) denotes the spectrum of A and �(A)
denotes the resolvent set of A. The following sets are well-known semigroups of
semi-Fredholm operators on H :

�+(H) = fA 2 B(H) : R(A) is closed and dimN (A) <1g

��(H) = fA 2 B(H) : R(A) is closed and dimH=R(A) <1g :

The semigroup of Fredholm operators is �(H) = �+(H) \ ��(H). If A is semi-
Fredholm and �(A) = dimN (A) and �(A) = dimH=R(A), then we may de�ne an
index: i(A) = �(A)��(A). We also consider a class �0(H) = fA 2 �(H) : i(A) =
0 g (Weyl operators). For A 2 B(H), the following familiar spectra are de�ned

�a(A) = f� 2 C : inf
x2H ; kxk=1

k(A� �)xk = 0 g � the approximate spectrum;

�e(A) = f� 2 C : A� � =2 �(H) g � the Fredholm spectrum;

�w(A) = f� 2 C : A� � =2 �0(H) g � the Weyl spectrum, and

�b(A) =
\
f�(A+K) : AK = KA;K 2 K(H) g � the Browder spectrum :

We use �le(A) (�re(A)) left (right) essential spectrum of A (that is left (right)
spectrum of �(A) in B(H)=K(H)), and �lre(A) = �le(A) \ �re(A).

Let �00(A) be the set of all � 2 C such that � is an isolated point of �(A)
and 0 < dimN (A � �) < 1 and let �0(A) be the set of all normal eigenvalues
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of A, that is the set of all isolated points of �(A) for which the corresponding
spectral projection has �nite-dimensional range and let �0(A) = �lre(A) [ �0(A).
It is well-known that �b(A) = �(A) n �0(A) [2, 7].

We say that A obeys Weyl's theorem [7, 10], if

�w(A) = �(A)n�00(A):

Let �0e(A) be the union of all trivial components of the set

(�e(A)n[�
�
s�F (A)]

�) [ (
[

�1<n<1

f[�ns�F (A)]
�n�ns�F (A)g) ;

where ��s�F (A) = f� 2 C : i(A��) 6= 0 g and �ns�F (A) = f� 2 C : i(A��) = n g.

If (�n) is a sequence of compact subsets of C, then its limit inferior is

lim inf
n!1

�n = f� 2 C : there are �n 2 �n with �n ! � g

and its limit superior is

lim sup
n!1

�n = f� 2 C : there are �nk 2 �nk with �nk ! � g :

If lim infn!1 �n = lim supn!1 �n, then limn!1 �n is said to exist and is equal
to this common limit. A mapping p, de�ned on B(H), whose values are compact
subset of C is said to be upper (lower) semi-continuous at A, provided that if
An ! A then lim supn!1 p(An) � p(A) (p(A) � lim infn!1 p(An)). If p is both
upper and lower semi-continuous at A, then it is said to be continuous at A and in
this case limn!1 p(An) = p(A).

We say that A 2 B(H) is hyponormal provided that kA�xk � kAxk for all
x 2 H and A is quasihyponormal, if kA�Axk � kA2xk for all x 2 H . Note
that the Weyl's theorem is proved for hyponormal and quasihyponormal operators
[6, 7, 10].

2. Results

Theorem 2.1. Let A 2 B(H) obeys Weyl's theorem. Then �w is continuous

at A if and only if � is continuous at A.

Proof. Let �w is continuous at A 2 B(H) and let fAng be a sequence in B(H)
such that An ! A. Since � is upper semi-continuous [3, 4] we have to show that � is
lower semi-continuous at A, or �(A) � lim infn!1 �(An) . Let � 2 �(A). Then, if
� 2 �w(A) � �(A), we have � 2 �w(A) � lim infn!1 �w(An) � lim infn!1 �(An) .
Suppose that � 2 �(A)n�w(A). Since A obeys Weyl's theorem we have that � 2
�00(A), so � is an isolated point of �(A). Now from [9, Theorem 3.26] it follows
that � 2 lim infn!1 �(An).

Now, let � be continuous at A and let A obeys Weyl's theorem. Since �0(A) �
�00(A), we have

�0(A) \ �e(A) � �00(A) \ �w(A) = �00(A) \ (�(A)n�00(A)) � �oe(A) ;

and so, by [1, Theorem 14.17] �w is continuous at A.
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Corollary 2.2. Let A 2 B(H) obeys Weyl's theorem. If �a is continuous at

A then �w is continuous at A.

Proof. If �a is continuous at A, then by [4, Theorem 5.1.] we have that �
is continuous at A, too. Now, since A obeys Weyl's theorem, by Theorem 2.1 it
follows that �w is continuous at A.

Lemma 2.3. Let A 2 B(H). If � is continuous at A, then �0 is upper semi-

continuous at A.

Proof. Since � is continuous at A, by [3, Corollary 3.2] it follows that
int �0s�F (A) = ;. Now, by [5, Theorem 1.3] we have that �0 is upper semi-
continuous.

Theorem 2.4. Let A 2 B(H). If � and �w are continuous at A, then �b is

continuous at A.

Proof. Suppose that �b is not continuous at A. Since �b is upper semi-
continuous at every A 2 B(H) [2, Lemma 2.1], then we have a sequence of operators
fAng � B(H) such that

�b(A) * lim inf
n!1

�b(An) ;

i.e. there exsist � 2 �b(A), � > 0 and nonnegative integer n1 such that B(�; �) \
�b(An) = ;, for every n > n1. Since �w is continuous at A we have that � 2
�b(A) n �w(A).

Now, from continuity of � at A we have

� 2 �b(A) � �(A) � lim inf
n!1

�(An) ;

i.e. there exists a nonnegative integer n2 such that B(�; �) \ �(An) 6= ;, for every
n > n2. There exists a �n 2 B(�; �) \ �(An) such that �n 2 �(An) n �b(An) =
�0(An), i.e. �n 2 �0(An) [ �lre(An) = �0(An), for every n > n0 = maxfn1; n2g.

Since � is continuous at A, by Lemma 2.3. we have that �0 is upper semi-
continuous at A. As B(�; �) \ �0(An) 6= ;, n > n0 it follows that

� 2 lim sup
n!1

�0(An) � �0(A) = �lre(A) [ �0(A) :

Since � =2 �w(A), we have that � =2 �lre(A), i.e. � 2 �0(A) = �(A) n �b(A).
This contradiction concludes the proof.

Theorem 2.5. If An, A are quasihyponormal operators in B(H) such that

An ! A, then �w(An)! �w(A).

Proof. As proved in [3, 7, 10], quasihyponormal operators obeys Weyl's theo-
rem and so, by [8, Theorem 1] we have that �(An)! �(A). Now, by Theorem 2.1
we have that �w(An)! �w(A).

Corollary 2.6. Let An; A are quasihyponormal operators in B(H) such that

An ! A. Then �b(An)! �b(A).
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Proof. Since An; A are quasihyponormal operators, by [8, Theorem 2.] we have
that limn!1 �(An) = �(A) and by Theorem 2.5 we have that limn!1 �w(An) =
�w(A). Now by Theorem 2.4 it follows that limn!1 �b(An) = �b(A).
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