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Abstract. This study is on an innovative technique of integral-type operators that adopt
the Baskakov basis function in recursion form and the Szédsz basis function, accentuating how
well they approximate integrable functions. The study addresses the challenge of achieving
more accurate function approximation, and mainly contributes to improving the theoretical
aspects of the proposed operators. We examine the convergence properties of the proposed
operators by employing Peetre’s K-functional, second-order modulus of smoothness, and
modulus of continuity. Additionally, we derive the Voronovskaja-type asymptotic formula
and establish approximation results in weighted spaces. Finally, we show that the proposed
operators significantly enhance the approximation accuracy through various examples and
graphs.

1. Introduction

In 1912, S.N. Bernstein [8] unveiled the seminal Bernstein polynomials, which provide
elegant and intuitive proof of the Weierstrass approximation theorem when applied
to the interval [0,1]. Building on this foundation, Sz&sz [22] later expanded these
operators to the infinite interval [0, 00). This pioneering work has inspired the devel-
opment of numerous linear positive operators over unbounded intervals, including the
Baskakov operators [7] defined on [0,00). Subsequently, Gupta and Srivastava [14]
employed Baskakov and Szasz basis functions to present a sequence of operators for
the integrable function  on [0, c0) as follows:
S o)
Syl ) =n Y Posta) [ s )z, we, (1)
£=0

where P e(x) = (", 7")a" (14 2)7"~" and spo(x) =" (ngc!)[_
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2 Integral-type operators

Many researchers have recently concentrated on integral-type modifications of op-
erators to find better approximations on unbounded intervals (see [1,5,9,10, 12,20,
21,25]). To enhance the approximation, Khosravian-Arab et al. [18] introduced new
modified Bernstein operators. If u € C[0,1], then sequence of the operators are
given by

BT (s Zn(:) () Lz e0,1], (2)

Jﬂl = (@, n)Jy—1e(x) + (L= z,n)Jy_1 -1 (2), L <L <n—1, (3)
Jn,O = C(xan)<1 - x)n la J%1 = C(l - 35777>77_1, and
C(—=z,n) = (1 (n)(—z) + Co(n), and where (o(n), ¢1(n) are unknown sequences.

Recently, some researchers constructed integral-type operators by using a modified
Bernstein basis function (3) to find a better approximation. To see relevant work in
this area, one may refer to [2,3,6,15,17,23].

In the same way, very recently, Acu et al. [4] introduced a sequence of modified
Baskakov-type operators as follows:

., M, 1
Qur Z R (t). aeboo 0
The fundamental polynomials satlsfy the recursion
Pyt = (=) Py e(@) + CL+ 2, Py e (@), €21,

P%l = ((=z,n)(1+2)7"", and
¢(=z,m) = Gi1(n)(—x) + Co(n), where (o(n), (1(n) are unknown sequences.

2. Construction of the operators

We construct a new class of operators for contribute to improving the theoretical
aspects of the proposed operators. If u is a integrable function on [0, 00) such that
Io” 85 0(2)p(2)dz < oo, then

WP (i) = nZPMl/ st (u(2)dz neN. (5)

In particular, if o(n) = —1, ¢1(n) = 1, then (5) reduces to (1). Note that throughout
the paper, we consider the relation (o(n) + (1(n) =1 — (o(n).

The structure of the paper is outlined as follows. We create an innovative tech-
nique of integral-type operators that adopt the Baskakov basis function in recursion
form and the Szasz basis function in Section 2. We obtain some basic results for the
operators in Section 3. Section 4 explores the convergence properties of the proposed
operators by employing Peetre’s K-functional, second-order modulus of smoothness,
and modulus of continuity. Additionally, we derive the Voronovskaja-type asymp-
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totic formula. We establish approximation results in weighted spaces in Section 5.
In the final section, we show how the proposed operators significantly enhance the
approximation accuracy.

3. Basic results

We present several lemmas that will be used in the proofs of the main results.

LEMMA 3.1. Fore.(z) =2" andr =0,1,2,3,4, then the moments of the operators (5)
as follows:
M,1
Hﬁ;f (eo(2);z) =1,
M 927 +1)(1 — 1
H ™ (er(ehia) = o+ ZEDNO G0

)

A e
n 22(2n + (n +5)(1 — Co(n))) +4(1 — Co(n)) + 2
U ’
HEE" (es(2);0) = 2° + 23 (n(3n +2) + 6(n +7731)(77 +2)(1 = o))
L3t 1)22(3n + (n+ 14)(1 — ¢o(n)))
773
L 18z + (n+3)(1 = Go(m)) + 18(L = Go(n)) +6
n® ’
W E (ea(2):2) = 2 + 't (n(6n” + 11 + 6) + 8(n ;41)(77 +2)(n+3)(1 — G(n)))
LA+ D0+ a3 (4n + (n + 27)(1 — Co(n)))
774
L 2+ 1)22(3n 4 2(n + 8)(1 — Go(n)))
n*
L 482(2n + (3 + 1)1 = Go(n)) +96(1 = Go(m) +24
nt '
Proof. We have
I o(r) = /0 2"sp o(2)dz = W’

D L=, m)Pysree) = 7 hel (L 2) 77 (14 2 — (14 22)(1 = Go(n))
14

[eS)
=0

X oF (7’+1a77+13151j_x),
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and

D L)+ @) Pyrema (@) = 07" (r 4+ DI +2) 7" (1+ 22)(1 = Go(n) — @)
{=1

X oF (r+2,n+1;2;x>,

14z
00 ) i—1
where hypergeometric function o F (a,b;c;z) = 3 %xl, (a); = ] (a+ 7).
i=0 o j=0

Using the relations above, we can easily compute the moments for the proposed
operators.

LEMMA 3.2. Let oy (x) = ’H;"’fM)l((el(z) —zeo(2))";z) and r = 1,2,4, we calculate
easily central moments by using Lemma (3.1), we get
(2z+ 1) —G(m) +1

an,l(@ - n ’

22+ 401 = Qo)) +22(n +501 = Gm) +41 =G +2 ¢
s ’

oy a() = = (3n(n +2) + 8(5;7 +6)(1 — ¢o(n))
L A2 +8) + (4ly +54)(1 = Go(n))
P
L 122%(n(n +6) +2(9n + 16)(1 = Go(n))
P
N 242 (3n + (3n + 14)(1 — Co(n))) + 96(1 — Co(n)) + 24 7
N '
In this paper, (6) and (7) are referred to as ouy 2(x) and oy 4(x) in the Theorems 4.2, 4.8,
4.4, 4.5, and 5.2.

apa(z) =

Now, we define a normed space given by Sga[0, 00) = {u € C[0,00) : v is bounded
over [0,00) and [ sy o(2) p(z)dz < oo} that has the norm

lull = sup |u(z)]. (8)
2€[0,00)
LEMMA 3.3. If po(n) is a bounded sequence, and p € Sga[0,00), then we get
M,1
T ()] < ul)- (9)

4. Direct result and asymptotic formula

In this section, we explore some important results.
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M,1
P

THEOREM 4.1. Let p € Sga[0,00). If lim (y(n) exists, then lim ’HZZ () =
n—o0 n—o0 )

w(x) holds uniformly on compact subsets of [0, 00).

Proof. Lemma 3.1 allows for easy to establish that lim HZ’fM’l(eT(z); x) = z" for
n—00 ’

r =0,1,2,3,4, and hence the well known Bohman-Korovkin’s theorem due to [19],

M1
operators H’;f converge uniformly on every compact subset of [0,00) to p(x). U

For p € Sga0,00) , the Peetre’s K-functional is given by

Ef(p,0)= _inf  {|lu—|+3[¢ ||}, whered >0, and
YEWE ((0,00))
WC*Z([O,OO)) - {’(/J S SBd [O, OO) : Qﬁ/,l/// S SBd [O, OO)}
K{ (1,0) < Muwa(p, V5), (10)
where  wa(p, V) =  sup < sup lp(z + 2€*) — 2u(z + €*) + u(x)|>
0<e*<V6§ \@:x+e*,x+2e*€[0,00)
is called the second order of modulus of continuity of y. The expression
w(p, ) = sup_ |u(2) — ()| (11)

is commonly referred to as the modulus of continuity of y, where z, z € [0, 00).

THEOREM 4.2. Let (1) be a bounded sequence. If i1 € Sga[0,00), and § = ) 2(z) +

2
( (2f6+1)(1;§0(77))+1 ) . then

n,£

HEP (s ) — ()] < Mawa(pis /5T2) + <u, 2z + 1){ ~ ¢om) + 1) ,

n
where My > 0 is constant.

Proof. Firstly, we introduce

NI (s = Ml (i) — (x ¢ 2o N0-Gn)+1

Ui

n,L

) +u(z).  (12)

Let ¢ € W(};([O,OO)), then by Taylor’s theorem

. pM,1
Applying N} on (13),

P ) = )+ N e i) + NG / (z — w (w)dw; z
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By Lemma 3.2 and (12), ./\/:’KPMJ(Z — x;x) = 0. Therefore,

IVEE () — (@) < NP (/( w)|dw; )
(e dw)i

7 (/Z(Z—w)dw;m>

oq EED—Com)+1

/I S <H <zx+1><1nco<n>>+1w) dw

<] <an,2<x>+ ((2””(”0("”“) ) = 5]

< " NS

By (12),

INVEE™ (s 2) = ()] < 19 ( (M

+

)

n
‘We have

HIP (1) — i) = NP = ) — (= ) N (1) — )

Yo <x+ (2z + 1)(1;C0(77))+1> — u(@).

1P () = )| < N (= ) = (= ) (@) + NS () — ()

n
<2l =l + 6" || + w (% (22 +1)(1 7_7 Golm) + 1) |

Taking infimum of ¢ on WC*Q([O 50)) of the right hand side of the inequality,

T () — ()| < K (/«h g) iy <u, 2z +1)(1 ; Co(m) + 1> |

Using (10), we get

PI\/I 1

M)

(5 2) — p(w)] < Mywa(p, v/0/2) +w (u, (22 + 1)1 = Go(m) + 1) ] 0

Ui

M,1
Now, we address Voronovskaja-type asymptotic formula [24] for the operators ”H“ r

THEOREM 4.3. If lim (o(n) = ap € R, and functions p, ' ,ji € Sgal0,00), then
n—o0

p ()
2

im gl () - ple)] = (20 -+ D1 - a0) + Di' (@) + (e +2)
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Proof. By the Taylor’s theorem

2
’ z— X "

p(2) = @)+ (- o @)+ E @) s b -0t (1)
where heg(x;2) is the Peano form of the remainder, heg(z;2) € Spa[0,00), and
lim, . hy (25 2) = 0.

. m PM,I
Applying H, on (14),

"

M,1 / . pM1 T L PM1
M () = o)+ @™ (2 = wgs) + LD (s
+ H‘n‘;fMJ (hes (z; 2) (2 — )% ).
. M,1 , . N” T .
Tim o () — )] = ) Jim (1) + 7 i (e ()

+ Jim (A (hes (252) (2 — 2)% )

= (2z+1)(1 —ao) + D' (z) + 2(z + 2) ==L + &,

h 1 p, P . 2,
where &, = nlingo(nr}{"!f (ha (z;2)(z — )% x)).

Using Cauchy-Bunyakovsky-Schwarz inequality, we get

M,1 M,1
n’HZf (hes (75 2) (2 — x)%; 2) < \/772?—[5:5 (h3(z; 2); 33)\/04,774(33).
We observe that if n — oo, then z — = and lim hg (z; 2) = 0. It follows that

Z—T

. 29, P 0 L _ . .
hﬁm (m°Hyp  (hy(x;2);2)) = 0 uniformly with respect to z € [0, 00).
700 ’

1,1

So, &, = nlingo(nHZ:fk (hes (3 2) (2 — x)%;x)) = 0. This completes the proof. O

Here, we examine how to assess the degree of approximation by using the Ditzian-
Toitik moduli of smoothness. By [11], let

(.8 = sup up e+ €6 — 2p(x) + ulax — 0V )
0<e*<d \ z,z+€e*0* ,z—2e*0* €[0,00)

and the K-functional is given by

Kl (6= inf  {Ju—ol + 026"},
) P €A.C.ioc([0,00))

and €3 = {p € Sga[0,00) : " € A.C.1pe(]0,00)), 6220 || < o0}, where 6%(z) = z,
0 <A < 1. We have Ky ga(p,62) ~ wiy (1, 0).

THEOREM 4.4. Let {y(n) be a bounded sequence. If i € Spal0,00) and x € [0,00),
then

M,1 (1-2) x T —
00 (i) — ()| < e (/%5"\/2—”( >>+w(u, I
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Proof. Consider

N ) = ™ ) = (4 B DI )

) +p(z).  (15)

n
Let v € @i, by Taylor’s theorem
’ 1 h "
92) = b(@) + (=20 @)+ [ (2 - 0 (w)dw. (19)
Applying N:’ePM’l on (16),
NN’PM,I ) _ , Nu’P}W,l ) INMPMJ ” dw:
ne Wiz)=v@) 0 @NG (2 —aa) + SNy (z —w)y (w)dw;z | .
(17)
By Lemma 3.2 and (15), /\/;‘If’ZPM’l(z — x;7) = 0. We have
N )] < 3]l (18)

1
and an2(z) < *572,(53)7
n

where 82(z) = F@ 0+ 40 = G0) +20()(n+ 5(1 = Go(m))) +4(1L = Qo)) +2

n

From [11, p. 141], for z < w < x, we have

|z —w| |z — x| |z —w| |z — x|

. 1

w) < @ M P S oW (19)
By (15) and (17),
N () — ()] < [N ( / (z— wm’/(w)dw;x) ‘

< Hf;fMJ (/(z — w)¢,,(w)dw;aj>
ot ErEDA=CoU 41 B )
z n

using (19),

(z=2)2 \ 1620 || / (2a+1)(A-Go(n)+1)
o (z "'E>+ 2 () ( n )

NP ) =) < 820 [HE™ <

)
7 ' M,1 2
< b, 2 @)620 | (g 2 (@)) +0, 2 @) 020 (™ ((z=a)i))

_ ” 62(:17) _ ” 62(.’E)
< &, P (@)l|07 ||UT+577 Ha)la ||WT-
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Hence,

260" V() san (20)
2y

NP () — ()] <
Using (8), (18), and (20),
NP (s ) )] <IN (s ) [N (s )= @) [ ()~ ()
< A= HNE (5 2)— ()]

20, (@)
U

< Af|p—=yll+ 18524

Hence,
|H¢7L:5M11(M;ZE)*,LL(1‘)| S |'/V'T,;L7,6P1VI’1(M;I)i‘u(gc)‘+ ',LL <QZ+ (2I+1)(1n<0(77))+1> u(x)‘

e (M’ 57(71»(95)) . (/% (2x+1)(1—§o(n))+1> . -

V21 n

THEOREM 4.5. For u € Sgal0,00) and bounded sequence (o(n), then
1P (s 2) — ()] < 2w(p, 8), where§ = y/ay o (@),

Proof. We use the property of modulus of continuity,

)~ o) < wlpslz =) < (14 5 = i)
™ ) = o) < anile) [ 55,02 ) - (o)l ds
< <1 + % ¥ ay,o() [O § (2) |7 — 2] dz> (i, 8),
where a, o(z) =n > P! ().

By Cauchy-Bunyakovsky-Schwarz inequality,
pM.1
My () — p()|

§<1—|— (35\/&”7@(.%)/0 s;’e(z)dz\/amg(x)/o 8;’4(2)(z—x)2dz>> w(p,0)

<1+(1S\/(”H¢;7’5M’1((z — 2)2; :17)) w(p, )= (Hé an,Q(x)) w(p,d)=2w(p,0). O
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5. Weighted approximation

The purpose of this section is to determine approximation properties of the operators
M,1
’Hf] ’f using weighted spaces of continuous functions.
Let Sgﬁ ([0,00)) be a normed space specified by

Sy, ([0,00)) = {p+ [(@)] < Kpyw (@), @ € [0,00)},

endowed with the norm llll2 = sup \u(m)|’
z€[0,00) yw(x)

where y,,(z) = 1 + 2 and constant K, > 0 depends on function .
Moreover, we define following spaces,
(i) Ay, ([0,00)) = {p € S ([0,00)) : pu is continuous function on [0,00)},

(if) A% ([0,00)) = { € Ay, ([0,00)) : lim ) o ists in R).

=00 Yy (1)

It was shown in [16] that for any p € A} ([0,00)), the weighted modulus of
continuity is denoted by

Qu; 6) = sup [u(z + ) — p(@)] )

21)
I A prap) o s (

LEMMA 5.1. If p € Ay, ([0,00)), then
(i) Q1(u;90) is a monotonically increasing function of ¢,

(it) 1 (p; B0) < 2(1+ B)(1 4 6%) (1;6), 8 > 0,

(i4i) Q1(u;0) — 0 asd — 0.
The definition of weighted modulus of continuity enables us to write

|1(2) = p(@)] < yu(@)(1 + (2 = 2)*)Q (s |2 — ). (22)
THEOREM 5.2. If Co(n) is a bounded sequence, and p € Sga[0,00), then
He ™ () = ()

<2 ( ) ) ( J3(331;%)(81 +VE1Ex(x+2)) + v Erx(r + 2)) .

Proof. For x,z € [0,00). From (22) and Lemma 5.1, we get

() = 1) < (14 = 2P0 (425

|2 — x|

21+ (o) (14 557 ) (4 G- )0 (23)

Applying H“:fM’I on (23),

PM 1 |fo|

" ) -no)] < 20042 @0 (1455) 1 -0)ia]
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pMo1 1
R 5

1
=2(14+0%) s () (115 6) 1+ay 2(z)+<HEY (|z—x|;x)+5

5t
By Cauchy-Bunyakovsky-Schwarz inequality, we get

e () = ()] < 21+ 0%y () (11.0) [1 + 1y 2(a)
1 1
+5(ana(@)'? + 5 (ana(@))”? <an,4<x>>”2} - @
From (6) and (7), we have o, o(x) < w and ;) 4(z) < 5”2;77?2)2, where £ > 1

and & > 1 are constants.
Using the above inequalities in (24) and choosing § =

ey ’(z—x|(z—x)2;g;)].

1

> we get desired result. O

THEOREM 5.3. If (o(n) is a bounded sequences, then for each p € Aj ([0,00)) and
x € [0,00), we have

. pM,1
Hm ([H17, (s.) — pll2 = 0.

n—ro0

Proof. Using [13], it is sufficient to verify the following conditions to show this theorem

. ll’P]VI,l . r - -
nlirgo (M, e (ersz) —2"|l2 =0, r=0,1,2. (25)

We have ’Hi]‘,’fM’l (eo;z) =1, so for r = 0 (25) holds. By Lemma 3.1,

pM
||7'lM7PM’1(e ;) —zl[2 = sup e (o)~ <l
1, - 2 =
-t z€[0,00) y’w(x)
1 2 1)(1— 1
=_ sup <($—|— )1~ Go(m) + >—>Oasn—>oo.
T z€[0,00) yw(l')

For r = 1, the condition (25) is satisfied. Again by Lemma 3.1,

M 1P (095 0)—a?)
ks (ez;w)—w2llz=x§£&) = wa)m -
Lo (1‘2(77+4(77+1)(1—CO(U)))+2$(277+(77+5)(1—C0(TI)))+4(1—Co(77))+2>
772 z€[0,00) yw(x) yw(x) .

M,1
Evidently, ||7-[g’f (e2;2) — 22|l — 0 as n — oo, for r = 2, the condition (25) is
satisfied. Hence, the theorem proved. O

COROLLARY 5.4. For bounded sequence (o(n), and p € Ay, ([0,00)), then

#7P1\/I,1
. e (wsw) — p()]
lim sup prs) =0, where s > 0.
N2 z€[0,00) (yw(‘r))

Proof. For any fixed xg > 0,

M,1 M,1 M,1
wp e @@l )] () —)
e W@ Tasy @) e (@)
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M,1
Mo HES (1 + 2%2)| ()]
<[P () — +pllo sup —24 sup .
H n,4 (M ) IU’HC[O,:DO] ||IU’H - (yw(x))erl - (yw(x))SH
According to Theorem 4.1, the second term from the leftmost in the above inequal-
p, PO 2
; My  (1+2%2)]
ity tends to 0 as 7 — oo, and for the fixed zg, terms ||u||2 sup —2 T
>z (Yu())*F
and sup Lﬂﬂ can be made sufficiently small if we choose xg large enough.
o>z (Yu(T))*
Thus, the goal of proof is proved. 0

6. Graphical and numerical analysis

This section evaluates the performance of the operators through Examples 6.1 and 6.2.
M,1
The graphs in Figures 1, 2, and 3 present a comparison of the operators ’Hf; ’f and

Sé"’ep for various choices of 1 and (y(n). These comparisons reveal that operators

M,1
7—[1‘;7’5 performs better than S#f - We compute the absolute error Er_, pa1 =
n,2

\H;"f%l(u; x) — p(z)| for different values of x over the interval [0,10]. The results
are presented in Tables 1, 2, and 3. All computations were carried out using Wolfram
Mathematica, version 12.0.

EXAMPLE 6.1. Let us consider test function p(z) = 2% — 222 + 3, and sequence (o(n)
such that Co(n) + ¢ (n) =1 — Co(n).

35
3.0
25

2.0

0.0 0.5 1.0 15 2.0

Figure 1: Convergence behaviour of the operators Hg"’fM’land S#”EP, when (o(n) =1+ o
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X ETHgéF;M,l E’I“Sgs,i E’I“HgéiM,l E’I“Sgo,i

2 | 1.065600000 | 1.574784000 | 0.650624000 | 0.753648000
4 | 5.667609600 | 11.42438400 | 4.283129600 | 5.576048000
6 | 14.54256640 | 35.45638400 | 12.59293440 | 17.38404800
8 | 28.42836480 | 79.58438400 | 27.27639680 | 39.09604800
10 | 48.06289920 | 149.7219840 | 50.02987520 | 73.63044800

Table 1: Absolute error table, when (o(n) =1+ %.

13

EXAMPLE 6.2. Let us consider test function u(x) = e=5%22, and sequence (o(n) such

that Co(n) +Ci(n) =1 —¢o(n).

0.025

0.020]

0.015

0.010}
0.005]

0.000 &*
0.0

Figure 2: Convergence behaviour of the operators Hg:f

........
.
.~

1

1

1

w,PM,1

Er
H50,£

0.4

Elrs[J.,P

50,0

0.6

w,PM,1

Er
HlOO,I{

0.8

M,1
. P
and S*

n,¢

Er w,P
3100,2

when (o(n) =

0.2
0.4
0.6
0.8
1.0

0.000125888
0.002201000
0.001329850
0.000006117
0.000738063

0.000185218
0.002200320
0.001290670
0.000042608
0.000780769

0.000066347
0.001191800
0.000679063
0.000049574
0.000432683

Table 2: Absolute error table, when (o(n) =

0.000083740
0.001191750
0.000667798
0.000063174
0.000444103

n—1

i

n—1

i
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0.025

0.020

0.015

000QM v
0.0 0.5 1.0 15 2.0
Figure 3: Convergence behaviour of the operators Hﬁ:val and S#”ZP, when (o(n) = ﬁ
X E’I"Hg,zpl\/f,l E?”Sgy,lP ETHTéiM.l E?"S,;S,i
2 0.000228556 | 0.002865275 | 0.000298000 | 0.001111522
4 0.000118996 | 0.000589816 | 0.000000779 | 0.000036130
6 0.000060832 | 0.000165405 | 0.000000324 | 0.000001787
8 0.000027798 | 0.000059520 | 0.000000045 | 0.000000141
10 | 0.000013539 | 0.000025397 | 0.000000006 | 0.000000016

Table 3: Absolute error table, when (o(n) = ﬁ.

7. Conclusion

The present study explores an innovative technique of integral-type operators that
adopt the Baskakov basis function in recursion form and the Szasz basis function,
emphasizing how well they approximate integrable functions over the interval [0, 0o).
A vital component of the investigation is to assess the flexibility and convergence
of the proposed operators, which count on the choice of the sequence (o(n) and 7,
respectively. It examines how variations in these traits influence the performance of
the proposed operators. In addition, the performance of the operators under various
choices n and sequence (y(7n) is also visualized using the graphs. The graphs offer a
simpler overview of how these traits influence the behavior of the proposed operators,
which can be especially valuable when communicating findings to others.
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