Abstract The paper considers the problem
$$
D^{(2)}w+a(z,\bar z)Dw+b(z,\bar z)w=f(z,\bar z),
$$
with boundary conditions
$$
\aligned c_1(z)\a_{g(z)}w+c_2\a_{g(z)}Dw&=c_3(z),\\
d_1(z)\a_{h(z)}w+d_2\a_{h(z)}Dw&=d_3(z).
\endaligned
$$
The problem is solved approximately, by using the formulas
$$
\align
2\df{z^2}{h^2}(w_{i+1}-2w_i+w_{i-1})+a_i\df zh(w_{i+1}-w_{i-
1})+b_iw_i&=f_i,\quad i=1,\dots,n-1,\\
c_1(z)w_0+c_2(z)\df zh(-w_2+4w_1-3w_0)&=c_3(z),\\
d_1(z)w_n+d_2(z)\df zh(3w_n-4w_{n-1}+w_{n-2})&=d_3(z).
\endalign
$$
|