MATEMATIČKI VESNIK
МАТЕМАТИЧКИ ВЕСНИК



MATEMATIČKI VESNIK
An $L_p$ estimate for the difference of derivatives of spectral expansions arising by one-dimensional Schrödinger operators
Nebojša L. Lažetić and Olivera R. Djordjević

Abstract

We prove the estimate $$ \|\sigma_{\mu}^{\prime}(x,f)- \tilde\sigma_{\mu}^{\prime}(x,f)\|_{L_p(G)}\le C\|f\|_{BV(G)}\cdot\mu^{1-1/p}, $$ where $2\le p<+\infty$, and $\sigma_{\mu}(x,f),\tilde \sigma_{\mu}(x,f)$ are the partial sums of spectral expansions of a function $f(x)\in BV(G)$, corresponding to arbitrary non-negative self-adjoint extensions of the operators $\Cal Lu=-u^{\prime\prime}+q(x)u$, $\tilde{\Cal L}u=-u^{\prime\prime}+\tilde q(x)u$ $(x\in G)$ respectively; the operators are defined on an arbitrary bounded interval $G\subset \Bbb R$.

Creative Commons License

Keywords: Spectral expansions, self-adjoint extension, Schrödinger operator.

MSC: 34L10, 47E05

Pages:  125--131     

Volume  54 ,  Issue  3$-$4 ,  2002