Abstract For a sequence of polynomials
$P_n(x):=\sum_{m\le n}p_mx^m$, $n\ge 1$, we give a necessary and sufficient
condition for the asymptotic equivalence
$$
P_n^{(\alpha)}(x):=\sum_{m\le n}c_mp_mx^m\sim c_nP_n(x) \quad (n\to\infty),
$$
to hold for each $x\ge A$ and an arbitrary regularly varying sequence $\{c_n\}$
of index $\alpha\in R$.
|