MATEMATIČKI VESNIK
МАТЕМАТИЧКИ ВЕСНИК



MATEMATIČKI VESNIK
The resultant of non-commutative polynomials
Aleksandra Lj. Erić

Abstract

Let $R=K[x;\sigma]$ be a skew polynomial ring over a division ring $K$. Necessary and sufficient condition under which common right factor of two skew polynomials exists is established. It is shown that the existence of common factor depends on the value of non-commutative (Dieudonné) determinant built on coefficients of polynomials and their $\sigma^{l}$-images.

Creative Commons License

Keywords: Polynomial ring; skew polynomial; resultant.

MSC: 12E15

Pages:  3--8     

Volume  60 ,  Issue  1 ,  2008