On $L^{1}$-convergence of certain generalized modified trigonometric sums |
Karanvir Singh and Kulwinder Kaur |
Abstract In this paper we define new modified generalized sine sums
$K_{nr}(x)=\dfrac{1}{2\sin x}\sum_{k=1}^{n}(\triangle^{r}a_{k-1}-\triangle^{r}a_{k+1})
\tilde{S}_{k}^{r-1}(x)$ and study their $L^{1}$-convergence under a newly defined class $\bold{K}^{\alpha}$.
Our results generalize the corresponding results of Kaur, Bhatia and Ram [6] and Kaur~[7].
|
Keywords: $L^{1}-$convergence; conjugate Cesàro means; generalized sine sums. |
MSC: 42A20, 42A32 |
Pages: 219--226 |
Volume 61
, Issue 3
, 2009
|