| On $L^{1}$-convergence of certain generalized modified trigonometric sums | 
| Karanvir Singh and Kulwinder Kaur | 
| 
 Abstract In this paper we define new modified generalized sine sums
$K_{nr}(x)=\dfrac{1}{2\sin x}\sum_{k=1}^{n}(\triangle^{r}a_{k-1}-\triangle^{r}a_{k+1})
\tilde{S}_{k}^{r-1}(x)$ and study their $L^{1}$-convergence under a newly defined class $\bold{K}^{\alpha}$.
Our results generalize the corresponding results of Kaur, Bhatia and Ram [6] and Kaur~[7]. 
 | 
| Keywords: $L^{1}-$convergence; conjugate Cesàro means; generalized sine sums. | 
| MSC: 42A20, 42A32 | 
| Pages:  219--226      | 
| Volume  61
,  Issue  3
,  2009
 |