Abstract Let $K$ be either a CW or a metric
simplicial complex. We find sufficient conditions for the subspace inequality
$$A\subset X, \quad K\in \text{\rm AE}(X)\Rightarrow K\in \text{\rm AE}(A).$$
For the Lebesgue dimension ($K=S^n$) our result is a slight
generalization of Engelking's theorem for a strongly hereditarily
normal space $X$. As a corollary we get the inequality
$$A\subset X\Rightarrow\dim_GA\leq\dim_GB.$$
for a certain class of paracompact spaces $X$ and an arbitrary abelian group $G$.
As for the addition theorems
$$\gather
K\in \text{\rm AE}(A), \;\; L\in\text{\rm AE}(B)\Rightarrow K\ast L\in\text{\rm AE}(A\cup B),\\
\dim_G(A\cup B)\leq\dim_GA+\dim_GB+1,
\endgather$$
we extend Dydak's theorems for metrizable spaces ($G$ is a ring with unity) to some classes of paracompact spaces.
|