MATEMATIČKI VESNIK
МАТЕМАТИЧКИ ВЕСНИК



MATEMATIČKI VESNIK
Fractional double Newton step properties for polynomials with all real zeros
A. Melman

Abstract

When doubling the Newton step for the computation of the largest zero of a real polynomial with all real zeros, a classical result shows that the iterates never overshoot the largest zero of the derivative of the polynomial. Here we show that when the Newton step is extended by a factor $\theta$ with $1 < \theta < 2$, the iterates cannot overshoot the zero of a different function. When $\theta=2$, our result reduces to the one for the double-step case. An analogous property exists for the smallest zero.

Creative Commons License

Keywords: Newton; overshoot; polynomial; double; fractional; step; zero; root.

MSC: 65H05

Pages:  1--9     

Volume  62 ,  Issue  1 ,  2010