Abstract We find the exact asymptotic behaviour of singular values of the
operator $CP_h$, where $C$ is the integral Cauchy's operator and $P_h$ integral operator with the kernel
$$
K\left( z,\zeta\right) =\frac{\left( 1-\vert z\vert^2\vert\zeta\vert^2\right)^2}
{\pi\vert 1-z\overline{\zeta }\vert^4}-\frac{2}{\pi }\ \frac{\vert z\vert^2\vert\zeta\vert^2}
{\vert 1-z\overline{\zeta }\vert^2}.
$$
|