MATEMATIČKI VESNIK
МАТЕМАТИЧКИ ВЕСНИК



MATEMATIČKI VESNIK
Generalizations of primal ideals in commutative rings
Ahmad Yousefian Darani

Abstract

Let $R$ be a commutative ring with identity. Let $\phi: \sI\to \eI$ be a function where $\sI$ denotes the set of all ideals of $R$. Let $I$ be an ideal of $R$. An element $a\in R$ is called $\phi$-prime to $I$ if $ra\in I - \phi(I)$ (with $r\in R$) implies that $r\in I$. We denote by $S_\phi(I)$ the set of all elements of $R$ that are not $\phi$-prime to $I$. $I$ is called a $\phi$-primal ideal of $R$ if the set $P := S_\phi(I)\cup \phi(I)$ forms an ideal of $R$. So if we take $\phi_{\emptyset}(Q) = \emptyset$ (resp., $\phi_0(Q) = 0$), a $\phi$-primal ideal is primal (resp., weakly primal). In this paper we study the properties of several generalizations of primal ideals of $R$.

Creative Commons License

Keywords: Primal ideal; weakly primal ideal; $\phi$-primal ideal.

MSC: 13A15, 13A10

Pages:  25--31     

Volume  64 ,  Issue  1 ,  2012