MATEMATIČKI VESNIK
МАТЕМАТИЧКИ ВЕСНИК



MATEMATIČKI VESNIK
Generalized derivations as a generalization of Jordan homomorphisms acting on Lie ideals
Basudeb Dhara, Shervin Sahebi and Venus Rahmani

Abstract

Let $R$ be a prime ring with extended centroid $C$, $L$ a non-central Lie ideal of $R$ and $n\geq 1$ a fixed integer. If $R$ admits the generalized derivations $H$ and $G$ such that $H(u^2)^n=G(u)^{2n}$ for all $u\in L$, then one of the following holds: {(1)} $H(x)=ax$ and $G(x)=bx$ for all $x\in R$, with $a,b\in C$ and $a^n=b^{2n}$; {(2)} char$(R)\neq 2$, $R$ satisfies $s_4$, $H(x)=ax+[p,x]$ and $G(x)=bx$ for all $x\in R$, with $b\in C$ and $a^n=b^{2n}$; {(3)} char$(R)=2$ and $R$ satisfies $s_4$. As an application we also obtain some range inclusion results of continuous generalized derivations on Banach algebras.

Creative Commons License

Keywords: Prime ring; generalized derivation; extended centroid; Utumi quotient ring; Banach algebra.

MSC: 16W25, 16N60, 16R50, 16D60

Pages:  92--101     

Volume  67 ,  Issue  2 ,  2015