MATEMATIČKI VESNIK
МАТЕМАТИЧКИ ВЕСНИК



MATEMATIČKI VESNIK
Applications of PDEs to the study of affine surface geometry
P. Gilkey, X. Valle-Regueiro

Abstract

If $\mathcal{M}=(M,\nabla)$ is an affine surface, let $\mathcal{Q}(\mathcal{M}):=\ker(\mathcal{H}+\frac1{m-1}\rho_s)$ be the space of solutions to the quasi-Einstein equation for the crucial eigenvalue. Let $\tilde{\mathcal{M}}=(M,\tilde\nabla)$ be another affine structure on $M$ which is strongly projectively flat. We show that $\mathcal{Q}(\mathcal{M})=\mathcal{Q}(\tilde{\mathcal{M}})$ if and only if $\nabla=\tilde\nabla$ and that $\mathcal{Q}(\mathcal{M})$ is linearly equivalent to $\mathcal{Q}(\tilde{\mathcal{M}})$ if and only if $\mathcal{M}$ is linearly equivalent to $\tilde{\mathcal{M}}$. We use these observations to classify the flat Type $\mathcal{A}$ connections up to linear equivalence, to classify the Type $\mathcal{A}$ connections where the Ricci tensor has rank 1 up to linear equivalence, and to study the moduli spaces of Type $\mathcal{A}$ connections where the Ricci tensor is non-degenerate up to affine equivalence.

Creative Commons License

Keywords: Type $\mathcal{A}$ affine surface; quasi-Einstein equation; affine Killing vector field; locally homogeneous affine surface.

MSC: 53C21

Pages:  45--62     

Volume  71 ,  Issue  1-2 ,  2019