MATEMATIČKI VESNIK
МАТЕМАТИЧКИ ВЕСНИК



MATEMATIČKI VESNIK
WELL-POSEDNESS STUDY FOR SOLUTIONS TO NONLINEAR DEGENERATE PARABOLIC PROBLEMS WITH VARIABLE EXPONENT
N. Elharrar, J. Igbida

Abstract

The purpose of this article is to prove the existence and uniqueness of weak solutions for nonlinear parabolic problem whose model is \begin{align*} \begin{cases} \frac{\partial v}{\partial t}-\operatorname{div}\left[|\nabla v-\Theta(v)|^{q(x)-2}(\nabla v-\Theta(v))\right]+\beta(v)=f & \text { in }\quad Q_{T}:=(0, T) \times \Omega ,\\ v=0 & \text { on }\quad \Sigma_{T}:=(0, T) \times \partial \Omega, \\ v(\cdot, 0)=v_{0} & \text { in }\quad \Omega. \end{cases} \end{align*} We transform the parabolic problem into the elliptic problem by using time discretization technique by Euler forward scheme and Rothe method combined with the theory of variable exponent Sobolev spaces.

Creative Commons License

Keywords: Nonlinear parabolic problem; existence; weak solution; variable exponent; semi-discretization; uniqueness; Rothe method.

MSC: 35K55, 35A01, 35A02

DOI: 10.57016/MV-SBdK8647

Pages:  1--12