Abstract The purpose of this article is to prove the existence and uniqueness of weak solutions for nonlinear parabolic problem whose model is
\begin{align*}
\begin{cases}
\frac{\partial v}{\partial t}-\operatorname{div}\left[|\nabla v-\Theta(v)|^{q(x)-2}(\nabla v-\Theta(v))\right]+\beta(v)=f & \text { in }\quad Q_{T}:=(0, T) \times \Omega ,\\
v=0 & \text { on }\quad \Sigma_{T}:=(0, T) \times \partial \Omega, \\
v(\cdot, 0)=v_{0} & \text { in }\quad \Omega.
\end{cases}
\end{align*}
We transform the parabolic problem into the elliptic problem by using time discretization technique by Euler forward scheme and Rothe method combined with the theory of variable exponent Sobolev spaces.
|