MATEMATIČKI VESNIK
МАТЕМАТИЧКИ ВЕСНИК



MATEMATIČKI VESNIK
SOME GENERALIZATIONS OF A THEOREM OF PAUL TURÀN CONCERNING POLYNOMIALS
T. Akhter, B. A. Zargar, M. H. Gulzar

Abstract

Let $P(z)=\sum_{\nu=0}^n a_\nu z^\nu$ be a polynomial of degree $n$ having all its zeros in $|z|\leq k$, $ k\geq 1$. It was shown by Govil that $\underset{|z|=1}\max|P'(z)|\geq\frac{n}{1+k^n}\underset{|z|=1}\max|P(z)|$. In this paper, we shall obtain some sharp estimates by involving the coefficients which not only refine the above result but also generalise some well-known results of this type.

Creative Commons License

Keywords: Polynomials; inequalities in complex domain; derivative; s-fold zeros.

MSC: 26D10, 30C15, 41A17

Pages:  205--213     

Volume  74 ,  Issue  3 ,  2022