Abstract Several upper estimates for the numerical radius of Hilbert space operators are given. Among many other inequalities, it is shown that
\begin{align*}{{\omega }^{2}}\left( A \right)\le \frac{1}{4}\left\| {{\left| A \right|}^{2}}+{{\left| {{A}^{*}} \right|}^{2}} \right\|
+\frac{1}{2}\omega \left( {{A}^{2}} \right)-\frac{1}{2}\underset{\left\| x \right\|=1}
{\mathop{\underset{x\in \mathscr H}{\mathop{\inf }}\,}}\,{{\left( \sqrt{\left\langle {{\left| A \right|}^{2}}x,x \right\rangle }
-\sqrt{\left\langle {{\left| {{A}^{*}} \right|}^{2}}x,x \right\rangle } \right)}^{2}}.\end{align*}
|