EMBEDDINGS TO RECTILINEAR SPACE AND GROMOV--HAUSDORFF DISTANCES |
A. O. Ivanov, A. A. Tuzhilin |
Abstract We show that the problem whether a given finite metric space can be embedded into $m$-dimensional rectilinear space
can be reformulated in terms of the Gromov--Hausdorff distance between some special finite metric spaces.
|
Keywords: Gromov--Hausdorff distance; rectilinear space; isometric embeddings; finite metric spaces; normed spaces. |
MSC: 46B85, 51F99, 53C23 |
DOI: 10.57016/MV-TU633QO3 |
Pages: 136--148 |
Volume 76
, Issue 1-2
, 2024
|