MATEMATIČKI VESNIK
МАТЕМАТИЧКИ ВЕСНИК



MATEMATIČKI VESNIK
ON $(\alpha, \beta, \gamma)$-METRICS
N. Sadeghzadeh, T. Rajabi

Abstract

In this paper, we introduce a new class of Finsler metrics that generalize the well-known $(\alpha, \beta)$-metrics. These metrics are defined by a Riemannian metric $\alpha$ and two 1-forms $\beta=b_i(x)y^i$ and $\gamma=\gamma_i(x)y^i$. This new class of metrics not only generalizes $(\alpha, \beta)$-metrics, but also includes other important Finsler metrics, such as all (generalized) $\gamma$-changes of generalized $(\alpha, \beta)$-metrics, $(\alpha, \beta)$-metrics, and spherically symmetric Finsler metrics in $\mathbb{R}^n$. We find a necessary and sufficient condition for this new class of metrics to be locally projectively flat. Furthermore, we prove the conditions under which these metrics are of Douglas type.

Creative Commons License

Keywords: Finsler geometry, $(\alpha, \beta, \gamma)$-metrics, Projectively flat, Douglas space.

MSC: 53B40, 53C60

DOI: 10.57016/MV-DMVS3382

Pages:  159--173     

Volume  76 ,  Issue  3 ,  2024