Abstract In this paper, we derive some nonlinear differential equations from generating function of generalized harmonic numbers and give some identities
involving generalized harmonic numbers and special numbers by using these
differential equations. For example, for any positive integers $N,$ $n,$ $r,$ $\alpha $ and any integer $m\geq 2,$
\begin{align*}
\dfrac{S_{1}(n+N,r+1)}{n!}
&=\sum\limits_{j=0}^{n}\sum\limits_{i=0}^{n}\sum\limits_{l=0}^{i}\sum%
\limits_{z=0}^{l}\sum\limits_{k=0}^{r}\left( -1\right) ^{l-z-i}\dbinom{m}{%
l-z}\dbinom{i-l+m-2}{i-l}\dfrac{N^{j}\alpha ^{i}}{j!\left( n-i\right) !}\\
& \quad\times S_{1}(N,r-k+1)S_{1}\left( n-i,k\right)
H(z,j-1,\alpha )
\end{align*}
where $S_{1}\left( n,k\right) $ is Stirling number of the first kind.
|