Abstract
We prove an inequality that implies a 2-concave and $p$-convex Banach lattice is ``more'' uniformly convex than $L^p$.
Keywords: Banach space, uniform convexity
MSC: 46B20, 46B42
Pages: 29--33
Volume 45 , Issue 1$-$4 , 1993
Published by Društvo matematičara Srbije Kneza Mihaila 35/IV, P.O.B. 355, 11000 Belgrade, Serbia E-mail: drustvomatematicara(at)yahoo.com Fax: +381 11 3036 819 ISSN 2406-0682 (Online), ISSN 0025–5165 (Print)