Norm inequality for the class of self-adjoint absolute value
generalized derivations
Danko R. Jocić
Abstract
We prove that for all $0\le\alpha\le 2/3$
$$
\Vert |A|^{\alpha}X-X|B|^{\alpha}\Vert \le
2^{2-\alpha}\Vert X\Vert^{1-\alpha} \Vert AX-XB\Vert^{\alpha},
$$
for all bounded Hilbert space operators $A=A^*$, $B=B^*$ and $X$,
as well as
$$
\Vert |A|^{\alpha}-|B|^{\alpha}\Vert \le
2^{2-\alpha} \Vert A-B\Vert^{\alpha},
$$
for arbitrary bounded $A$ and $B$.
Keywords: Singular values, three line theorem for operators,
unitarily invariant norms.