We define and study a class of holomorphic Besov type spaces
$B^p$, $0 < p < 1$, on bounded symmetric domains $\Omega$.
We show that the dual of holomorphic Besov space $B^p$, $0 < p < 1$,
on bounded symmetric domain $\Omega$ can be identified with the
Bloch space $\Cal B^{\infty}$.
Keywords: Besov type spaces, dual spaces, Bloch spaces.