MATEMATIČKI VESNIK
МАТЕМАТИЧКИ ВЕСНИК



MATEMATIČKI VESNIK
Converegence of a finite difference method for the heat equation---interpolation technique
Dejan Bojović and Boško S. Jovanović

Abstract

In this paper we show how the theory of interpolation of function spaces can be used to establish convergence rate estimates for finite difference schemes. As a model problem we consider the first initial-boundary value problem for the heat equation with variable coefficients in a domain $(0,1)^2\times (0,T]$. We assume that the solution of the problem and the coefficients of equation belong to corresponding Sobolev spaces. Using interpolation theory we construct a fractional-order convergence rate estimate which is consistent with the smoothness of the data.

Creative Commons License

Keywords: Initial-Boundary Value Problems, Finite Differences, Interpolation of Function Spaces, Sobolev Spaces, Convergence Rate Estimates.

MSC: 65M15, 46B70

Pages:  257--264     

Volume  49 ,  Issue  3$-$4 ,  1997