MATEMATIČKI VESNIK
МАТЕМАТИЧКИ ВЕСНИК



MATEMATIČKI VESNIK
Global existence and asymptotic behavior in time of small solutions to the elliptic-hyperbolic Davey-Stewrtson system
Nakao Hayashi and Hitoshi Hirata

Abstract

We study the initial value problem for the Davey-Stewartson systems $$ \cases i\partial_t u+c_0\partial_{x_1}^2u+\partial_{x_2}^2 u = c_1|u|^2u+c_2u\partial_{x_1}\varphi, \quad (x,t)\in{\bold R}^3,\\ \partial_{x_1}^2\varphi+c_3\partial_{x_2}^2\varphi = \partial_{x_1}|u|^2,\\ u(x,0) = \phi(x), \endcases $$ where $c_0,c_3\in{\bold R}$, $c_1,c_2\in{\bold C}$, $u$ is a complex valued function and $\varphi$ is a real valued function. The initial data $\phi$ is $\bold C$-valued function on $\bold R^n$, and usually it belongs to some kind of Sobolev type spaces.

Creative Commons License

Keywords: Elliptic-hyperbolic system, Davey-Stewartson system.

MSC: 35J45, 35L45

Pages:  273--278     

Volume  49 ,  Issue  3$-$4 ,  1997