Abstract We prove the existence of
solutions, in separable Banach spaces, for the following differential inclusion:
\begin{align*}
\left\{
\begin{array}{ll}
\dot{x}(t) \in F(t,T(t)x),\quad &\mbox{a.e. on }[0,\tau];\\
x(s)=\varphi(s),\quad &\forall s\in [-a,0]; \\
x(t) \in C(t),\quad &\forall t\in [0,\tau];
\end{array}
\right.
\end{align*}
We consider weaker hypotheses on the
constraint.
|