Processing math: 100%

MATEMATIČKI VESNIK
МАТЕМАТИЧКИ ВЕСНИК



MATEMATIČKI VESNIK
ON THE ERD\H{O}S-GYÁRFÁS CONJECTURE FOR SOME CAYLEY GRAPHS
M. Ghasemi, R. Varmazyar

Abstract

In 1995, Paul Erd\H{o}s and András Gyárfás conjectured that for every graph X of minimum degree at least 3, there exists a non-negative integer m such that X contains a simple cycle of length 2m. In this paper, we prove that the conjecture holds for Cayley graphs of order 2p2 and 4p.

Creative Commons License

Keywords: Erd\H{o}s-Gyárf\'s conjecture; Cayley graphs; cycles of graphs.

MSC: 05C38, 20B25

Pages:  37--42     

Volume  73 ,  Issue  1 ,  2021