MATEMATIČKI VESNIK
МАТЕМАТИЧКИ ВЕСНИК



MATEMATIČKI VESNIK
ON THE ERD\H{O}S-GYÁRFÁS CONJECTURE FOR SOME CAYLEY GRAPHS
M. Ghasemi, R. Varmazyar

Abstract

In 1995, Paul Erd\H{o}s and András Gyárfás conjectured that for every graph $X$ of minimum degree at least $3$, there exists a non-negative integer $m$ such that $X$ contains a simple cycle of length $2^m$. In this paper, we prove that the conjecture holds for Cayley graphs of order $2p^2$ and $4p$.

Creative Commons License

Keywords: Erd\H{o}s-Gyárf\'s conjecture; Cayley graphs; cycles of graphs.

MSC: 05C38, 20B25

Pages:  37--42     

Volume  73 ,  Issue  1 ,  2021