Continuity of the essential spectrum in the class of quasihyponormal
operators
Slaviša V. Djordjević
Abstract
Let $H$ be a separable Hilbert space. We write $\sigma (A)$ for
the spectrum of $A\in B(H)$, $\sigma_w(A)$ for the Weyl spectrum and
$\sigma_b(A)$ for the Browder spectrum.
Operator $A\in B(H)$ is quasihyponormal if $A^*(A^*A-AA^*)A\ge 0$, i.e.\
$\| A^*Ax\|\le \|A^2x\|$, for every $x\in H$.
Keywords: Weyl spectrum, Browder spectrum, quasihyponormal operator,
continuity of the spectrum.